Securing the Deep Fraud Detector in Large-Scale E-Commerce Platform via Adversarial Machine Learning Approach

Author:

Guo Qingyu1,Li Zhao2,An Bo1,Hui Pengrui2,Huang Jiaming2,Zhang Long2,Zhao Mengchen1

Affiliation:

1. Nanyang Technological University, Singapore

2. Alibaba Group, China

Publisher

ACM Press

Reference36 articles.

1. Anish Athalye, Nicholas Carlini, and David A. Wagner. 2018. Obfuscated Gradients Give a False Sense of Security: Circumventing Defenses to Adversarial Examples. In Proceedings of the 35th International Conference on Machine Learning (ICML'18). 274-283.

2. Jacob Buckman, Aurko Roy, Colin Raffel, and Ian Goodfellow. 2018. Thermometer Encoding: One Hot Way to Resist Adversarial Examples. (2018).

3. Nicholas Carlini, Guy Katz, Clark Barrett, and David L Dill. 2017. Provably Minimally-Distorted Adversarial Examples. arXiv1709(2017).

4. Nicholas Carlini and David A. Wagner. 2017. Towards Evaluating the Robustness of Neural Networks. In 2017 IEEE Symposium on Security and Privacy (SP'17). 39-57.

5. Pin-Yu Chen, Yash Sharma, Huan Zhang, Jinfeng Yi, and Cho-Jui Hsieh. 2018. EAD: Elastic-Net Attacks to Deep Neural Networks via Adversarial Examples. In Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence (AAAI'18). 10-17.

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Emerging Technologies in E-Commerce Security;Advances in Electronic Commerce;2024-09-27

2. VecAug: Unveiling Camouflaged Frauds with Cohort Augmentation for Enhanced Detection;Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining;2024-08-24

3. Role of Artificial Intelligence (AI) in Accounting Information Systems in Detecting Fraud;Studies in Systems, Decision and Control;2024

4. A Brief Survey of Machine Learning and Deep Learning Techniques for E-Commerce Research;Journal of Theoretical and Applied Electronic Commerce Research;2023-12-04

5. Detecting malicious reviews and users affecting social reviewing systems: A survey;Computers & Security;2023-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3