Addressing Trust Bias for Unbiased Learning-to-Rank

Author:

Agarwal Aman1,Wang Xuanhui2,Li Cheng2,Bendersky Michael2,Najork Marc2

Affiliation:

1. Cornell, USA

2. Google, USA

Publisher

ACM Press

Reference35 articles.

1. Aman Agarwal, Soumya Basu, Tobias Schnabel, and Thorsten Joachims. 2017. Effective Evaluation using Logged Bandit Feedback from Multiple Loggers. In Proc. of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining(KDD). 687-696.

2. Aman Agarwal, Ivan Zaitsev, and Thorsten Joachims. 2018. Consistent Position Bias Estimation without Online Interventions for Learning-to-Rank. (2018). arxiv:cs.LG/1806.03555

3. Qingyao Ai, Keping Bi, Cheng Luo, Jiafeng Guo, and W. Bruce Croft. 2018. Unbiased Learning to Rank with Unbiased Propensity Estimation. In Proc. of the 41st International ACM SIGIR Conference on Research & Development in Information Retrieval(SIGIR). 385-394.

4. Le´on Bottou, Jonas Peters, Joaquin Qui nonero Candela, Denis X. Charles, D. Max Chickering, Elon Portugaly, Dipankar Ray, Patrice Simard, and Ed Snelson. 2013. Counterfactual Reasoning and Learning Systems: The Example of Computational Advertising. Journal of Machine Learning Research14 (2013), 3207-3260.

5. Chris J.C. Burges. 2010. From RankNet to LambdaRank to LambdaMART: An Overview. Technical Report MSR-TR-2010-82. Microsoft Research.

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On (Normalised) Discounted Cumulative Gain as an Off-Policy Evaluation Metric for Top- n Recommendation;Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining;2024-08-24

2. Counterfactual Ranking Evaluation with Flexible Click Models;Proceedings of the 47th International ACM SIGIR Conference on Research and Development in Information Retrieval;2024-07-10

3. Toward Bias-Agnostic Recommender Systems: A Universal Generative Framework;ACM Transactions on Information Systems;2024-06-25

4. Whole Page Unbiased Learning to Rank;Proceedings of the ACM Web Conference 2024;2024-05-13

5. Unbiased Top-$k$ Learning to Rank with Causal Likelihood Decomposition;Proceedings of the Annual International ACM SIGIR Conference on Research and Development in Information Retrieval in the Asia Pacific Region;2023-11-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3