Revisiting Wedge Sampling for Triangle Counting

Author:

Turk Ata1,Turkoglu Duru2

Affiliation:

1. Boston University, USA

2. Loyola University, USA

Publisher

ACM Press

Reference40 articles.

1. Nesreen K Ahmed, Nick Duffield, Theodore L Willke, and Ryan A Rossi. 2017. On sampling from massive graph streams. Proceedings of the VLDB Endowment10, 11 (2017), 1430-1441.

2. Yazan Alaya AL-Khassawneh, Naomie Salim, and Obasa Adekunle Isiaka. 2014. Extractive Text Summarisation using Graph Triangle Counting Approach: Proposed Method. In 1 st International Conference of Recent Trends in Information and Communication Technologies in Universiti Teknologi Malaysia, Johor, Malaysia. 300-311.

3. N. Alon, R. Yuster, and U. Zwick. 1997. Finding and counting given length cycles. Algorithmica17, 3 (01 Mar 1997), 209-223.

4. A. Azad, A. Buluç, and J. Gilbert. 2015. Parallel Triangle Counting and Enumeration Using Matrix Algebra. In 2015 IEEE International Parallel and Distributed Processing Symposium Workshop. 804-811.

5. Grey Ballard, Tamara G Kolda, Ali Pinar, and C Seshadhri. 2015. Diamond sampling for approximate maximum all-pairs dot-product (MAD) search. In Data Mining (ICDM), 2015 IEEE International Conference on. IEEE, 11-20.

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Global triangle estimation based on first edge sampling in large graph streams;The Journal of Supercomputing;2023-04-03

2. Scalable Motif Counting for Large-scale Temporal Graphs;2022 IEEE 38th International Conference on Data Engineering (ICDE);2022-05

3. Faster and Generalized Temporal Triangle Counting, via Degeneracy Ordering;Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining;2021-08-14

4. CIC-PIM: Trading spare computing power for memory space in graph processing;Journal of Parallel and Distributed Computing;2021-01

5. Efficient Sampling Algorithms for Approximate Temporal Motif Counting;Proceedings of the 29th ACM International Conference on Information & Knowledge Management;2020-10-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3