Rating Augmentation with Generative Adversarial Networks towards Accurate Collaborative Filtering

Author:

Chae Dong-Kyu1,Kang Jin-Soo1,Kim Sang-Wook1,Choi Jaeho2

Affiliation:

1. Hanyang University, Republic of Korea

2. Naver Corporation, Republic of Korea

Publisher

ACM Press

Reference35 articles.

1. Antreas Antoniou, Amos Storkey, and Harrison Edwards. 2017. Data augmentation generative adversarial networks. arXiv preprint arXiv:1711.04340(2017).

2. Konstantinos Bousmalis, Nathan Silberman, David Dohan, Dumitru Erhan, and Dilip Krishnan. 2017. Unsupervised pixel-level domain adaptation with generative adversarial networks. In Proceedings of the IEEE international conference on computer vision and pattern recognition, Vol. 1. 7.

3. Dong-Kyu Chae, Jin-Soo Kang, Sang-Wook Kim, and Jung-Tae Lee. 2018. CFGAN: A generic collaborative filtering framework based on generative adversarial networks. In Proceedings of the 27th ACM international conference on information and knowledge management. 137-146.

4. Edward Choi, Siddharth Biswal, Bradley Malin, Jon Duke, Walter F Stewart, and Jimeng Sun. 2017. Generating multi-label discrete electronic health records using generative adversarial networks. arXiv preprint arXiv:1703.06490(2017).

5. Paolo Cremonesi, Yehuda Koren, and Roberto Turrin. 2010. Performance of recommender algorithms on top-n recommendation tasks. In Proceedings of the 4th ACM conference on recommender systems. 39-46.

Cited by 52 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Understanding Biases in ChatGPT-based Recommender Systems: Provider Fairness, Temporal Stability, and Recency;ACM Transactions on Recommender Systems;2024-08-28

2. Broad Recommender System: An Efficient Nonlinear Collaborative Filtering Approach;IEEE Transactions on Emerging Topics in Computational Intelligence;2024-08

3. Deep recommendation with iteration directional adversarial training;Computing;2024-07-17

4. Neural Click Models for Recommender Systems;Proceedings of the 47th International ACM SIGIR Conference on Research and Development in Information Retrieval;2024-07-10

5. Transfer contrast learning based on model-level data enhancement for cross-domain recommendation;Intelligent Decision Technologies;2024-06-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3