Quantum Algorithm Implementations for Beginners

Author:

J. Abhijith1,Adedoyin Adetokunbo1,Ambrosiano John1,Anisimov Petr1,Casper William1,Chennupati Gopinath1ORCID,Coffrin Carleton1,Djidjev Hristo1,Gunter David1,Karra Satish1,Lemons Nathan1,Lin Shizeng1,Malyzhenkov Alexander1,Mascarenas David1,Mniszewski Susan1,Nadiga Balu1,O’malley Daniel1,Oyen Diane1,Pakin Scott1,Prasad Lakshman1,Roberts Randy1,Romero Phillip1,Santhi Nandakishore1,Sinitsyn Nikolai1,Swart Pieter J.1,Wendelberger James G.1,Yoon Boram1,Zamora Richard1,Zhu Wei1,Eidenbenz Stephan1,Bärtschi Andreas1,Coles Patrick J.1,Vuffray Marc1,Lokhov Andrey Y.1ORCID

Affiliation:

1. Los Alamos National Laboratory, Los Alamos, New Mexico 87545

Abstract

As quantum computers become available to the general public, the need has arisen to train a cohort of quantum programmers, many of whom have been developing classical computer programs for most of their careers. While currently available quantum computers have less than 100 qubits, quantum computing hardware is widely expected to grow in terms of qubit count, quality, and connectivity. This review aims at explaining the principles of quantum programming, which are quite different from classical programming, with straightforward algebra that makes understanding of the underlying fascinating quantum mechanical principles optional. We give an introduction to quantum computing algorithms and their implementation on real quantum hardware. We survey 20 different quantum algorithms, attempting to describe each in a succinct and self-contained fashion. We show how these algorithms can be implemented on IBM’s quantum computer, and in each case, we discuss the results of the implementation with respect to differences between the simulator and the actual hardware runs. This article introduces computer scientists, physicists, and engineers to quantum algorithms and provides a blueprint for their implementations.

Publisher

Association for Computing Machinery (ACM)

Subject

General Medicine

Reference138 articles.

1. Retrieved from https://github.com/Qiskit/ibmq-device-information/tree/master/backends/tenerife/V1 ibmq-device-information

2. Read the fine print

3. A. Ambainis H. Buhrman P. Høyer M. Karpinski and P. Kurur. 2002. Quantum matrix verification. (2002).

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Optimization techniques for structural design of cold-formed steel structures;Recent Trends in Cold-Formed Steel Construction;2024

2. Quantum information processing with superconducting circuits: A perspective;Encyclopedia of Condensed Matter Physics;2024

3. A Taxonomic View of the Fundamental Concepts of Quantum Computing–A Software Engineering Perspective;Programming and Computer Software;2023-12

4. A Graph-Based Approach for Modelling Quantum Circuits;Applied Sciences;2023-10-28

5. Cloning and Beyond: A Quantum Solution to Duplicate Code;Proceedings of the 2023 ACM SIGPLAN International Symposium on New Ideas, New Paradigms, and Reflections on Programming and Software;2023-10-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3