On branching rules for convex mixed-integer nonlinear optimization

Author:

Bonami Pierre1,Lee Jon2,Leyffer Sven3,Wächter Andreas4

Affiliation:

1. CNRS, Université Aix Marseille, Marseille, France

2. University of Michigan, MI, USA

3. Argonne National Laboratory, IL, USA

4. Northwestern University, Evanston, IL, USA

Abstract

Branch-and-Bound (B&B) is perhaps the most fundamental algorithm for the global solution of convex Mixed-Integer Nonlinear Programming (MINLP) problems. It is well-known that carrying out branching in a nonsimplistic manner can greatly enhance the practicality of B&B in the context of Mixed-Integer Linear Programming (MILP). No detailed study of branching has heretofore been carried out for MINLP. In this article, we study and identify useful sophisticated branching methods for MINLP, including novel approaches based on approximations of the nonlinear relaxations by linear and quadratic programs.

Funder

U.S. Department of Energy

Directorate for Computer and Information Science and Engineering

Google

Division of Civil, Mechanical and Manufacturing Innovation

Agence Nationale de la Recherche

Advanced Scientific Computing Research

Division of Mathematical Sciences

Office of Science

Publisher

Association for Computing Machinery (ACM)

Subject

Theoretical Computer Science

Reference37 articles.

1. Abadie J. and Carpentier J. 1969. Generalization of the Wolfe reduced gradient method to the case of nonlinear constraints. In Optimization. Academic Press New York 37--47. Abadie J. and Carpentier J. 1969. Generalization of the Wolfe reduced gradient method to the case of nonlinear constraints. In Optimization. Academic Press New York 37--47.

2. FilMINT: An Outer Approximation-Based Solver for Convex Mixed-Integer Nonlinear Programs

3. Branching rules revisited

4. Applegate D. Bixby R. Chvátal V. and Cook W. 2006. The Traveling Salesman Problems. Princeton University Press. Applegate D. Bixby R. Chvátal V. and Cook W. 2006. The Traveling Salesman Problems. Princeton University Press.

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Optimizing Privacy-Preserving Content-Centric Networks;ICC 2023 - IEEE International Conference on Communications;2023-05-28

2. Minotaur: a mixed-integer nonlinear optimization toolkit;Mathematical Programming Computation;2020-11-07

3. Integrality gap minimization heuristics for binary mixed integer nonlinear programming;Journal of Global Optimization;2018-02-20

4. Chance-Constrained Programming with Decision-Dependent Uncertainty;SSRN Electronic Journal;2018

5. Polyhedral approximation in mixed-integer convex optimization;Mathematical Programming;2017-09-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3