Firepile

Author:

Nystrom Nathaniel1,White Derek2,Das Kishen2

Affiliation:

1. University of Lugano, Lugano, Switzerland

2. University of Texas at Arlington, Arlington, TX, USA

Abstract

Recent advances have enabled GPUs to be used as general-purpose parallel processors on commodity hardware for little cost. However, the ability to program these devices has not kept up with their performance. The programming model for GPUs has a number of restrictions that make it difficult to program. For example, software running on the GPU cannot perform dynamic memory allocation, requiring the programmer to pre-allocate all memory the GPU might use. To achieve good performance, GPU programmers must also be aware of how data is moved between host and GPU memory and between the different levels of the GPU memory hierarchy. We describe Firepile, a library for GPU programming in Scala. The library enables a subset of Scala to be executed on the GPU. Code trees can be created from run-time function values, which can then be analyzed and transformed to generate GPU code. A key property of this mechanism is that it is modular: unlike with other meta-programming constructs, the use of code trees need not be exposed in the library interface. Code trees are general and can be used by library writers in other application domains. Our experiments show Firepile users can achieve performance comparable to C code targeted to the GPU with shorter, simpler, and easier-to-understand code.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design,Software

Reference34 articles.

1. Aparapi: Java API for expressing GPU bound data parallel algorithms. http://developer.amd.com/zones/java/aparapi/Pages/default.aspx 2011. Aparapi: Java API for expressing GPU bound data parallel algorithms. http://developer.amd.com/zones/java/aparapi/Pages/default.aspx 2011.

2. Lime

3. Brook for GPUs

4. Language virtualization for heterogeneous parallel computing

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Exploration of Supervised Machine Learning Techniques for Runtime Selection of CPU vs. GPU Execution in Java Programs;Accelerator Programming Using Directives;2018

2. Accelerating Habanero-Java programs with OpenCL generation;Proceedings of the 2013 International Conference on Principles and Practices of Programming on the Java Platform: Virtual Machines, Languages, and Tools;2013-09-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3