Trading Off Power Consumption and Prediction Performance in Wearable Motion Sensors

Author:

Fallahzadeh Ramin1,Ghasemzadeh Hassan1

Affiliation:

1. Washington State University, Pullman, WA, USA

Abstract

Power consumption is identified as one of the main complications in designing practical wearable systems, mainly due to their stringent resource limitations. When designing wearable technologies, several system-level design choices, which directly contribute to the energy consumption of these systems, must be considered. In this article, we propose a computationally lightweight system optimization framework that trades off power consumption and performance in connected wearable motion sensors. While existing approaches exclusively focus on one or a few hand-picked design variables, our framework holistically finds the optimal power-performance solution with respect to the specified application need. Our design tackles a multi-variant non-convex optimization problem that is theoretically hard to solve. To decrease the complexity, we propose a smoothing function that reduces this optimization to a convex problem. The reduced optimization is then solved in linear time using a devised derivative-free optimization approach, namely cyclic coordinate search. We evaluate our framework against several holistic optimization baselines using a real-world wearable activity recognition dataset. We minimize the energy consumption for various activity-recognition performance thresholds ranging from 40% to 80% and demonstrate up to 64% energy savings.

Funder

National Science Foundation

Publisher

Association for Computing Machinery (ACM)

Subject

Electrical and Electronic Engineering,Computer Graphics and Computer-Aided Design,Computer Science Applications

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Research on CNN-based running arm swing action recognition method;2023 6th International Conference on Artificial Intelligence and Pattern Recognition (AIPR);2023-09-22

2. Research on Recognition Method of Running Landing Action Based on Posture Sensor;2023 IEEE International Conference on Smart Internet of Things (SmartIoT);2023-08-25

3. Managing Perceived Loneliness and Social-Isolation Levels for Older Adults: A Survey with Focus on Wearables-Based Solutions;Sensors;2022-02-01

4. Application of wearable motion sensor in business English teaching;Computer Science and Information Systems;2022

5. A Survey on Wearable Technology: History, State-of-the-Art and Current Challenges;Computer Networks;2021-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3