Minimizing stall time in single and parallel disk systems

Author:

Albers Susanne1,Garg Naveen2,Leonardi Stefano3

Affiliation:

1. Univ. Dortmund, Dortmund, Germany

2. Indian Institute of Technology, New Delhi, India

3. Univ. of Rome, Rome, Italy

Abstract

We study integrated prefetching and caching problems following the work of Cao et al. [1995] and Kimbrel and Karlin [1996]. Cao et al. and Kimbrel and Karlin gave approximation algorithms for minimizing the total elapsed time in single and parallel disk settings. The total elapsed time is the sum of the processor stall times and the length of the request sequence to be served. We show that an optimum prefetching/caching schedule for a single disk problem can be computed in polynomial time, thereby settling an open question by Kimbrel and Karlin. For the parallel disk problem, we give an approximation algorithm for minimizing stall time. The solution uses a few extra memory blocks in cache. Stall time is an important and harder to approximate measure for this problem. All of our algorithms are based on a new approach which involves formulating the prefetching/caching problems as linear programs.

Publisher

Association for Computing Machinery (ACM)

Subject

Artificial Intelligence,Hardware and Architecture,Information Systems,Control and Systems Engineering,Software

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Scheduling‐location problem with drones;International Transactions in Operational Research;2023-12-28

2. Clairvoyant prefetching for distributed machine learning I/O;Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis;2021-11-13

3. Prefetching and caching for minimizing service costs: Optimal and approximation strategies;Performance Evaluation;2021-01

4. Real-time integrated prefetching and caching;Journal of Scheduling;2012-12-05

5. Finding Total Unimodularity in Optimization Problems Solved by Linear Programs;Algorithmica;2009-04-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3