Interface surfaces for protein-protein complexes

Author:

Ban Yih-En Andrew1,Edelsbrunner Herbert2,Rudolph Johannes1

Affiliation:

1. Duke University Medical Center, Durham, North Carolina

2. Duke University, Durham, and Raindrop Geomagic, Research Triangle Park, North Carolina

Abstract

Protein-protein interactions, which form the basis for most cellular processes, result in the formation of protein interfaces. Believing that the local shape of proteins is crucial, we take a geometric approach and present a definition of an interface surface formed by two or more proteins as a subset of their Voronoi diagram. The definition deals with the difficult and important problem of specifying interface boundaries by invoking methods used in the alpha shape representation of molecules, the discrete flow on Delaunay simplices to define pockets and reconstruct surfaces, and the assessment of the importance of topological features. We present an algorithm to construct the surface and define a hierarchy that distinguishes core and peripheral regions. This hierarchy is shown to have correlation with hot-spots in protein-protein interactions. Finally, we study the geometric and topological properties of interface surfaces and show their high degree of contortion.

Publisher

Association for Computing Machinery (ACM)

Subject

Artificial Intelligence,Hardware and Architecture,Information Systems,Control and Systems Engineering,Software

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Hyppo-X: A Scalable Exploratory Framework for Analyzing Complex Phenomics Data;IEEE/ACM Transactions on Computational Biology and Bioinformatics;2021-07-01

2. Recent advances in user-friendly computational tools to engineer protein function;Briefings in Bioinformatics;2020-07-31

3. Characterizing and Predicting Protein Hinges for Mechanistic Insight;Journal of Molecular Biology;2020-01

4. COZOID: contact zone identifier for visual analysis of protein-protein interactions;BMC Bioinformatics;2018-04-06

5. Laguerre-Intersection Method for Implicit Solvation;International Journal of Computational Geometry & Applications;2018-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3