Automatic Extraction of Specimens from Multi-specimen Herbaria

Author:

Milleville Kenzo1ORCID,Thirukokaranam Chandrasekar Krishna Kumar1ORCID,Verstockt Steven1ORCID

Affiliation:

1. Ghent University - imec, IDLab

Abstract

Since herbarium specimens are increasingly becoming digitized and accessible in online repositories, an important need has emerged to develop automated tools to process and enrich these collections to facilitate better access to the preserved archives. Particularly, automatic enrichment of multi-specimen herbaria sheets poses unique challenges and problems that have not been adequately addressed. The complexity of localization of species in a page increases exponentially when multiple specimens are present in the same page. This already challenges the performance of models that work accurately with single specimens. Therefore, in this work, we have performed experiments to identify the models that perform well for the plant specimen localization problem. The major bottleneck for performing such experiments was the lack of labeled data. We also address this problem by proposing tools and algorithms to semi-automatically generate annotations for herbarium images. Based on our experiments, segmentation models perform much better than detection models for the task of plant localization. Our binary segmentation model can accurately extract specimens from the background and achieves an F1 score of 0.977. The ablation experiments for multi-specimen instance segmentation show that our proposed augmentation method provides a 38% increase in performance (0.51 mAP@0.9 versus 0.37) on a dataset of 1,500 plant instances.

Funder

The Department of Culture, Youth & Media, Flanders

Research foundation-Flanders research infrastructure

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Information Systems,Conservation

Reference21 articles.

1. Alexey Bochkovskiy Chien-Yao Wang and Hong-Yuan Mark Liao. 2020. YOLOv4: Optimal Speed and Accuracy of Object Detection. (2020). arxiv:cs.CV/2004.10934.

2. The French Muséum national d’histoire naturelle vascular plant herbarium collection dataset

3. Going deeper in the automated identification of Herbarium specimens

4. Automated Identification of Herbarium Specimens at Different Taxonomic Levels

5. Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. 2020. A simple framework for contrastive learning of visual representations. In Proceedings of the 37th International Conference on Machine Learning (Proceedings of Machine Learning Research), Hal Daumé III and Aarti Singh (Eds.), Vol. 119. PMLR, 1597–1607. https://proceedings.mlr.press/v119/chen20j.html.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3