Affiliation:
1. The RAND Corporation, Santa Monica, California
Abstract
Occasionally in the numerical solution of elliptic partial differential equations the rate of convergence of relaxation methods to the solution is adversely affected by the relative proximity of certain points in the grid. It has been proposed that the removal of the unknown functional values at these points by Gaussian elimination may accelerate the convergence.
By application of the Perron-Frobenius theory of non-negative matrices it is shown that the rates of convergence of the Jacobi-Richardson and Gauss-Seidel iterations are not decreased and could be increased by this elimination. Although this may indicate that the elimination could improve the convergence rate for overrelaxation, it is still strictly an unsolved problem.
Publisher
Association for Computing Machinery (ACM)
Subject
Artificial Intelligence,Hardware and Architecture,Information Systems,Control and Systems Engineering,Software
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献