Affiliation:
1. Tsinghua Shenzhen International Graduate School, Shenzhen, China
2. Beijing University of Technology, Beijing, China
Abstract
Opinion-unaware blind image quality assessment (OU BIQA) refers to establishing a blind quality prediction model without using the expensive subjective quality scores, which is a highly promising direction in the BIQA research. In this article, we focus on OU BIQA and propose a novel OU BIQA method. Specifically, in our proposed method, we deeply investigate the natural scene statistics (NSS) and the perceptual characteristics of the human brain for visual perception. Accordingly, a set of quality-aware NSS and perceptual characteristics-related features are designed to characterize the image quality effectively. For inferring the image quality, we learn a pristine multivariate Gaussian (MVG) model on a collection of pristine images, which serves as the reference information for quality evaluation. At last, the quality of a new given image is defined by measuring the divergence between its MVG model and the learned pristine MVG model. Thorough experiments performed on seven popular image databases demonstrate that the proposed OU BIQA method delivers superior performance to the state-of-the-art OU BIQA methods. The Matlab source code of the proposed method will be made publicly available at https://github.com/YT2015?tab=;repositories.
Funder
National Natural Science Foundation of China
China Postdoctoral Science Foundation
Publisher
Association for Computing Machinery (ACM)
Subject
Computer Networks and Communications,Hardware and Architecture
Cited by
45 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献