From relational verification to SIMD loop synthesis

Author:

Barthe Gilles1,Crespo Juan Manuel1,Gulwani Sumit2,Kunz Cesar1,Marron Mark1

Affiliation:

1. IMDEA Software Institute, Madrid, Spain

2. Microsoft Research, Redmond, WA, USA

Abstract

Existing pattern-based compiler technology is unable to effectively exploit the full potential of SIMD architectures. We present a new program synthesis based technique for auto-vectorizing performance critical innermost loops. Our synthesis technique is applicable to a wide range of loops, consistently produces performant SIMD code, and generates correctness proofs for the output code. The synthesis technique, which leverages existing work on relational verification methods, is a novel combination of deductive loop restructuring, synthesis condition generation and a new inductive synthesis algorithm for producing loop-free code fragments. The inductive synthesis algorithm wraps an optimized depth-first exploration of code sequences inside a CEGIS loop. Our technique is able to quickly produce SIMD implementations (up to 9 instructions in 0.12 seconds) for a wide range of fundamental looping structures. The resulting SIMD implementations outperform the original loops by 2.0x-3.7x.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design,Software

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Programming-by-Demonstration for Long-Horizon Robot Tasks;Proceedings of the ACM on Programming Languages;2024-01-05

2. Faster sorting algorithms discovered using deep reinforcement learning;Nature;2023-06-07

3. AI learns to write sorting software on its own;Nature;2023-06-07

4. Fast Instruction Selection for Fast Digital Signal Processing;Proceedings of the 28th ACM International Conference on Architectural Support for Programming Languages and Operating Systems, Volume 4;2023-03-25

5. Understanding the Power of Evolutionary Computation for GPU Code Optimization;2022 IEEE International Symposium on Workload Characterization (IISWC);2022-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3