A rieL : Adversarial Graph Contrastive Learning

Author:

Feng Shengyu1,Jing Baoyu2,Zhu Yada3,Tong Hanghang2

Affiliation:

1. Carnegie Mellon University, USA

2. University of Illinois at Urbana-Champaign, USA

3. IBM Research, USA

Abstract

Contrastive learning is an effective unsupervised method in graph representation learning, and the key component of contrastive learning lies in the construction of positive and negative samples. Previous methods usually utilize the proximity of nodes in the graph as the principle. Recently, the data-augmentation-based contrastive learning method has advanced to show great power in the visual domain, and some works extended this method from images to graphs. However, unlike the data augmentation on images, the data augmentation on graphs is far less intuitive and much harder to provide high-quality contrastive samples, which leaves much space for improvement. In this work, by introducing an adversarial graph view for data augmentation, we propose a simple but effective method, Adversarial Graph Contrastive Learning (A rieL ), to extract informative contrastive samples within reasonable constraints. We develop a new technique called information regularization for stable training and use subgraph sampling for scalability. We generalize our method from node-level contrastive learning to the graph level by treating each graph instance as a supernode. A rieL consistently outperforms the current graph contrastive learning methods for both node-level and graph-level classification tasks on real-world datasets. We further demonstrate that A rieL is more robust in the face of adversarial attacks.

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Reference66 articles.

1. Bijaya Adhikari Yao Zhang Naren Ramakrishnan and B. Aditya Prakash. 2018. Sub2Vec: Feature Learning for Subgraphs. In PAKDD. Bijaya Adhikari Yao Zhang Naren Ramakrishnan and B. Aditya Prakash. 2018. Sub2Vec: Feature Learning for Subgraphs. In PAKDD.

2. Aleksandar Bojchevski and Stephan Günnemann. 2019. Adversarial Attacks on Node Embeddings via Graph Poisoning. arxiv:1809.01093  [cs.LG] Aleksandar Bojchevski and Stephan Günnemann. 2019. Adversarial Attacks on Node Embeddings via Graph Poisoning. arxiv:1809.01093  [cs.LG]

3. Antoine Bordes , Nicolas Usunier , Alberto Garcia-Duran , Jason Weston , and Oksana Yakhnenko . 2013. Translating Embeddings for Modeling Multi-relational Data . In Advances in Neural Information Processing Systems, C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahramani, and K. Q . Weinberger (Eds.), Vol.  26. Curran Associates, Inc ., 2787–2795. https://proceedings.neurips.cc/paper/ 2013 /file/1cecc7a77928ca8133fa24680a88d2f9-Paper.pdf Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, and Oksana Yakhnenko. 2013. Translating Embeddings for Modeling Multi-relational Data. In Advances in Neural Information Processing Systems, C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahramani, and K. Q. Weinberger (Eds.), Vol.  26. Curran Associates, Inc., 2787–2795. https://proceedings.neurips.cc/paper/2013/file/1cecc7a77928ca8133fa24680a88d2f9-Paper.pdf

4. Convex Optimization

5. Ting Chen Simon Kornblith Mohammad Norouzi and Geoffrey Hinton. 2020. A Simple Framework for Contrastive Learning of Visual Representations. arxiv:2002.05709  [cs.LG] Ting Chen Simon Kornblith Mohammad Norouzi and Geoffrey Hinton. 2020. A Simple Framework for Contrastive Learning of Visual Representations. arxiv:2002.05709  [cs.LG]

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3