20 years of pattern mining

Author:

Giacometti Arnaud1,Li Dominique H.1,Marcel Patrick1,Soulet Arnaud1

Affiliation:

1. Université François-Rabelais de Tours, Blois France

Abstract

In 1993, Rakesh Agrawal, Tomasz Imielinski and Arun N. Swami published one of the founding papers of Pattern Mining: "Mining Association Rules between Sets of Items in Large Databases". Beyond the introduction to a new problem, it introduced a new methodology in terms of resolution and evaluation. For two decades, Pattern Mining has been one of the most active fields in Knowledge Discovery in Databases. This paper provides a bibliometric survey of the literature relying on 1,087 publications from five major international conferences: KDD, PKDD, PAKDD, ICDM and SDM. We first measured a slowdown of research dedicated to Pattern Mining while the KDD field continues to grow. Then, we quantified the main contributions with respect to languages, constraints and condensed representations to outline the current directions. We observe a sophistication of languages over the last 20 years, although association rules and itemsets are so far the most studied ones. As expected, the minimal support constraint predominates the extraction of patterns with approximately 50% of the publications. Finally, condensed representations used in 10% of the papers had relative success particularly between 2005 and 2008.

Publisher

Association for Computing Machinery (ACM)

Reference26 articles.

1. Mining association rules between sets of items in large databases

2. J. L. Balcázar . Minimum-size bases of association rules . In W. Daelemans B. Goethals and K. Morik editors ECML/PKDD (1) volume 5211 of Lecture Notes in Computer Science pages 86 -- 101 . Springer 2008 . 10.1007/978-3-540-87479-9_24 J. L. Balcázar. Minimum-size bases of association rules. In W. Daelemans B. Goethals and K. Morik editors ECML/PKDD (1) volume 5211 of Lecture Notes in Computer Science pages 86--101. Springer 2008. 10.1007/978-3-540-87479-9_24

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3