Participant Incentive Mechanism Toward Quality-Oriented Sensing

Author:

Yu Ruiyun1ORCID,Cao Jiannong2,Liu Rui3ORCID,Gao Wenyu4,Wang Xingwei1,Liang Junbin5

Affiliation:

1. Northeastern University, Liaoning, China

2. Hong Kong Polytechnic University, Hong Kong

3. University of Chicago, IL, USA

4. Virginia Polytechnic Institute and State University, VA, USA

5. Guangxi University, Guangxi, China

Abstract

The ubiquity of ever-more-capable mobile devices, especially smartphones, brings forth participatory sensing to collect and interpret information. It can achieve unprecedented quantity of data. However, it is arduous to guarantee quality of data because everyone can contribute data without scrutinization. It is an important issue in quality-oriented participatory sensing. Our idea to address this issue is motivating participants to contribute accurate data for improving data quality directly. In this article, we propose a reputation-based incentive mechanism, RIM, to realize the idea. More specifically, we identify the participants who collect the accurate data and regard them as the reputable ones. Then, the reputable participants are granted a higher chance to obtain rewards so that other people will try to follow such users and become reputable as well. Namely, RIM can encourage and steer users to collect accurate data in the long term. We analyze our incentive mechanism by formalization and premise implications. For a feasibility study of participatory sensing and verification of the implications, we implement and deploy a participatory sensing application focusing on monitoring environmental noise in a specific location as a case study and conduct a simulation based on the case study to further evaluate the proposed incentive mechanism. The results from the case study and the simulation present that RIM can remarkably increase the quality of collected data in participatory sensing while corroborating our theoretical implications.

Funder

Program for Liaoning Innovative Research Term in University

National Natural Science Foundation of China

Ministry of Education—China Mobile Research

Guangxi natural science foundation

Fundamental Research Funds for the Central Universities

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3