Tensorial Evolutionary Optimization for Natural Image Matting

Author:

Lei Si-Chao1ORCID,Gong Yue-Jiao1ORCID,Xiao Xiao-Lin2ORCID,Zhou Yi-Cong3ORCID,Zhang Jun4ORCID

Affiliation:

1. South China University of Technology, Guangzhou, China

2. South China Normal University, Guangzhou, China

3. University of Macau, Macau, China

4. Hanyang University, Seoul, South Korea

Abstract

Natural image matting has garnered increasing attention in various computer vision applications. The matting problem aims to find the optimal foreground/background (F/B) color pair for each unknown pixel and thus obtain an alpha matte indicating the opacity of the foreground object. This problem is typically modeled as a large-scale pixel pair combinatorial optimization (PPCO) problem. Heuristic optimization is widely employed to tackle the PPCO problem owing to its gradient-free property and promising search ability. However, traditional heuristic methods often encode F/B solutions to a one-dimensional (1D) representation and then evolve the solutions in a 1D manner. This 1D representation destroys the intrinsic two-dimensional (2D) structure of images, where the significant spatial correlations among pixels are ignored. Moreover, the 1D representation also brings operation inefficiency. To address the above issues, this article develops a spatial-aware tensorial evolutionary image matting (TEIM) method. Specifically, the matting problem is modeled as a 2D Spatial-PPCO (S-PPCO) problem, and a global tensorial evolutionary optimizer is proposed to tackle the S-PPCO problem. The entire population is represented as a whole by a third-order tensor, in which individuals are classified into two types: F and B individuals for denoting the 2D F/B solutions, respectively. The evolution process, consisting of three tensorial evolutionary operators, is implemented based on pure tensor computation for efficiently seeking F/B solutions. The local spatial smoothness of images is also integrated into the evaluation process for obtaining a high-quality alpha matte. Experimental results compared with state-of-the-art methods validate the effectiveness of TEIM.

Funder

National Natural Science Foundation of China

Guangdong Natural Science Funds for Distinguished Young Scholars

Guangdong Regional Joint Funds for Basic and Applied Research

TCL Young Scholars Program

Publisher

Association for Computing Machinery (ACM)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3