Characterizing Transactional Memory Consistency Conditions Using Observational Refinement

Author:

Attiya Hagit1,Gotsman Alexey2,Hans Sandeep3,Rinetzky Noam4

Affiliation:

1. Technion—Israel Institute of Technology, Haifa, Israel

2. IMDEA Software Institute, Madrid, Spain

3. Technion—Israel Institute of Technology

4. Tel Aviv University, Tel Aviv, Israel

Abstract

Transactional memory (TM) facilitates the development of concurrent applications by letting a programmer designate certain code blocks as atomic. The common approach to stating TM correctness is through a consistency condition that restricts the possible TM executions. Unfortunately, existing consistency conditions fall short of formalizing the intuitive semantics of atomic blocks through which programmers use a TM. To close this gap, we formalize programmer expectations as observational refinement between TM implementations. This states that properties of a program using a concrete TM implementation can be established by analyzing its behavior with an abstract TM, serving as a specification of the concrete one. We show that a variant of Transactional Memory Specification (TMS), a TM consistency condition, is equivalent to observational refinement for a programming language where local variables are rolled back upon a transaction abort. We thereby establish that TMS is the weakest acceptable condition for this case. We then propose a new consistency condition, called Strong Transactional Memory Specification (STMS) , and show that it is equivalent to observational refinement for a language where local variables are not rolled back upon aborts. Finally, we show that under certain natural assumptions on TM implementations, STMS is equivalent to a variant of a well-known condition of opacity. Our results suggest a new approach to evaluating TM consistency conditions and enable TM implementors and language designers to make better-informed decisions.

Funder

ADVENT

Broadcom Foundation and Tel Aviv University Authentication Initiative

EU FP7 projects TRANSFORM

Publisher

Association for Computing Machinery (ACM)

Subject

Artificial Intelligence,Hardware and Architecture,Information Systems,Control and Systems Engineering,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. C4: verified transactional objects;Proceedings of the ACM on Programming Languages;2022-04-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3