Controlling dynamic simulation with kinematic constraints

Author:

Isaacs Paul M.1,Cohen Michael F.1

Affiliation:

1. Cornell Univ., Ithaca, NY

Abstract

Theoretical and numerical aspects of the implementation of a DYNAmic MOtion system, dubbed DYNAMO, for the dynamic simulation of linked figures is presented. The system introduces three means for achieving, control of the resulting motion which have not been present in previous dynamic simulation systems for computer animation. (1) "Kinematic constraints" permit traditional keyframe animation systems to be embedded within a dynamic analysis. Joint limit constraints are also handled correctly through kinematic constraints. (2) "Behavior functions" relate the momentary state of the dynamic system to desired forces and accelerations within the figure. (3) "Inverse dynamics" provides a means of determining the forces required to perform a specified motion.The combination of kinematic and dynamic specifications allows the animator to think about each part of the animation in the way that is most suitable for the task. Successful experimental results are presented which demonstate the ability to provide control without disrupting the dynamic integrity of the resulting motion.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design,General Computer Science

Cited by 86 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Unified Simplicial Model for Mixed-Dimensional and Non-Manifold Deformable Elastic Objects;Proceedings of the ACM on Computer Graphics and Interactive Techniques;2019-07-26

2. The Maintenance Evaluation Method Based on Virtual Reality;Proceeding of the 24th International Conference on Industrial Engineering and Engineering Management 2018;2019

3. A Review on 3D Signing Avatars;International Journal of Multimedia Data Engineering and Management;2013-01

4. Realtime, Physics-Based Marker Following;Motion in Games;2012

5. Explicit and implicit animation with fuzzy constraints of a versatile multi-body system for virtual hand surgery;Computer Animation and Virtual Worlds;2011-04-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3