Stacking of BERT and CNN Models for Arabic Word Sense Disambiguation

Author:

Saidi Rakia1ORCID,Jarray Fethi2ORCID

Affiliation:

1. LIMTIC Laboratory - UTM University, Tunisia

2. Higher Institute of Computer Science of Medenine Gabes University; LIMTIC Laboratory - UTM University, Tunisia

Abstract

We propose a new approach for Arabic Word Sense Disambiguation (AWSD) by hybridization of single-layer Convolutional Neural Network (CNN) with contextual representation (BERT). WSD is the task of automatically detecting the correct meaning of a word used in a given context. WSD can be performed as a classification task, and the context is generally a short sentence. Kim [ 26 ] proved that combining a CNN with an RNN (recurrent neural network) provides a good result for text classification. Here, we use a concatenation of BERT models as a word embedding to get simultaneously the target and context representation. Our approach improves the performance of WSD in Arabic languages. The experimental results show that our model outperforms the state-of-the-art approaches and improves the accuracy of 96.42% on the Arabic WordNet dataset.

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Reference41 articles.

1. Arabic word sense disambiguation with conceptual density for information retrieval;Abderrahim M. Alaeddine;Models and Optimisation and Mathematical Analysis Journal,2018

2. Arabic Word Sense Disambiguation for Information Retrieval

3. ARBERT & MARBERT: Deep bidirectional transformers for Arabic;Abdul-Mageed Muhammad;arXiv preprint arXiv:2101.01785,2020

4. Rehab Hasan Abood and Sabrina Tiun. 2017. A comparative study of open-domain and specific-domain word sense disambiguation based on Quranic information retrieval. In MATEC Web of Conferences, Vol. 135. EDP Sciences, 00071.

5. Moustafa Al-Hajj and Mustafa Jarrar. 2021. ArabGlossBERT: Fine-tuning BERT on context-gloss pairs for WSD. (2021).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3