Transfer Reinforcement Learning for Autonomous Driving

Author:

Balakrishnan Aravind1ORCID,Lee Jaeyoung1ORCID,Gaurav Ashish1ORCID,Czarnecki Krzysztof1ORCID,Sedwards Sean1ORCID

Affiliation:

1. University of Waterloo, Canada

Abstract

Reinforcement learning (RL) is an attractive way to implement high-level decision-making policies for autonomous driving, but learning directly from a real vehicle or a high-fidelity simulator is variously infeasible. We therefore consider the problem of transfer reinforcement learning and study how a policy learned in a simple environment using WiseMove can be transferred to our high-fidelity simulator, W ise M ove . WiseMove is a framework to study safety and other aspects of RL for autonomous driving. W ise M ove accurately reproduces the dynamics and software stack of our real vehicle. We find that the accurately modelled perception errors in W ise M ove contribute the most to the transfer problem. These errors, when even naively modelled in WiseMove , provide an RL policy that performs better in W ise M ove than a hand-crafted rule-based policy. Applying domain randomization to the environment in WiseMove yields an even better policy. The final RL policy reduces the failures due to perception errors from 10% to 2.75%. We also observe that the RL policy has significantly less reliance on velocity compared to the rule-based policy, having learned that its measurement is unreliable.

Funder

Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery Grant

Japanese Science and Technology Agency (JST), Exploratory Research for Advanced Technology

Natural Sciences and Engineering Research Council of Canada (NSERC), Collaborative Research and Training Experience program

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Science Applications,Modeling and Simulation

Reference44 articles.

1. Marcin Andrychowicz et al. 2018. Learning Dexterous In-hand Manipulation. arxiv:1808.00177. Marcin Andrychowicz et al. 2018. Learning Dexterous In-hand Manipulation. arxiv:1808.00177.

2. P. Bender , J. Ziegler , and C. Stiller . 2014. Lanelets: Efficient map representation for autonomous driving . In Proceedings of the IEEE Intelligent Vehicles Symposium Proceedings. 420–425 . DOI: DOI:https://doi.org/10.1109/IVS. 2014 .6856487. P. Bender, J. Ziegler, and C. Stiller. 2014. Lanelets: Efficient map representation for autonomous driving. In Proceedings of the IEEE Intelligent Vehicles Symposium Proceedings. 420–425. DOI: DOI:https://doi.org/10.1109/IVS.2014.6856487.

3. K. Bousmalis et  al . 2018 . Using simulation and domain adaptation to improve efficiency of deep robotic grasping . In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA’18) . IEEE, 4243–4250. DOI: DOI:https://doi.org/10.1109/ICRA.2018.8460875. K. Bousmalis et al. 2018. Using simulation and domain adaptation to improve efficiency of deep robotic grasping. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA’18). IEEE, 4243–4250. DOI: DOI:https://doi.org/10.1109/ICRA.2018.8460875.

4. Greg Brockman Vicki Cheung Ludwig Pettersson Jonas Schneider John Schulman Jie Tang and Wojciech Zaremba. 2016. OpenAI Gym. arxiv:1606.01540. Greg Brockman Vicki Cheung Ludwig Pettersson Jonas Schneider John Schulman Jie Tang and Wojciech Zaremba. 2016. OpenAI Gym. arxiv:1606.01540.

5. J. Chen , Z. Wang , and M. Tomizuka . 2018. Deep hierarchical reinforcement learning for autonomous driving with distinct behaviors . In Proceedings of the IEEE Intelligent Vehicles Symposium (IV). IEEE, 1239–1244 . DOI: DOI:https://doi.org/10.1109/IVS. 2018 .8500368. J. Chen, Z. Wang, and M. Tomizuka. 2018. Deep hierarchical reinforcement learning for autonomous driving with distinct behaviors. In Proceedings of the IEEE Intelligent Vehicles Symposium (IV). IEEE, 1239–1244. DOI: DOI:https://doi.org/10.1109/IVS.2018.8500368.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3