Scalable and Efficient Flow-Based Community Detection for Large-Scale Graph Analysis

Author:

Bae Seung-Hee1,Halperin Daniel2,West Jevin D.3,Rosvall Martin4,Howe Bill3

Affiliation:

1. University of Washington, Western Michigan University, Kalamazoo, MI

2. University of Washington, WA, Google

3. University of Washington, Seattle, WA

4. Umeå University, Umeå, Sweden

Abstract

Community detection is an increasingly popular approach to uncover important structures in large networks. Flow-based community detection methods rely on communication patterns of the network rather than structural properties to determine communities. The Infomap algorithm in particular optimizes a novel objective function called the map equation and has been shown to outperform other approaches in third-party benchmarks. However, Infomap and its variants are inherently sequential, limiting their use for large-scale graphs. In this article, we propose a novel algorithm to optimize the map equation called RelaxMap. RelaxMap provides two important improvements over Infomap: parallelization, so that the map equation can be optimized over much larger graphs, and prioritization, so that the most important work occurs first, iterations take less time, and the algorithm converges faster. We implement these techniques using OpenMP on shared-memory multicore systems, and evaluate our approach on a variety of graphs from standard graph clustering benchmarks as well as real graph datasets. Our evaluation shows that both techniques are effective: RelaxMap achieves 70% parallel efficiency on eight cores, and prioritization improves algorithm performance by an additional 20--50% on average, depending on the graph properties. Additionally, RelaxMap converges in the similar number of iterations and provides solutions of equivalent quality as the serial Infomap implementation.

Funder

Intel Science and Technology Center for Big Data

National Science Foundation

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3