Scheduling real-time garbage collection on uniprocessors

Author:

Kalibera Tomas1,Pizlo Filip2,Hosking Antony L.2,Vitek Jan2

Affiliation:

1. University of Kent, Canterbury, United Kingdom

2. Purdue University, West Lafayette

Abstract

Managed languages such as Java and C# are increasingly being considered for hard real-time applications because of their productivity and software engineering advantages. Automatic memory management, or garbage collection, is a key enabler for robust, reusable libraries, yet remains a challenge for analysis and implementation of real-time execution environments. This article comprehensively compares leading approaches to hard real-time garbage collection. There are many design decisions involved in selecting a real-time garbage collection algorithm. For time-based garbage collectors on uniprocessors one must choose whether to use periodic , slack-based or hybrid scheduling. A significant impediment to valid experimental comparison of such choices is that commercial implementations use completely different proprietary infrastructures. We present Minuteman, a framework for experimenting with real-time collection algorithms in the context of a high-performance execution environment for real-time Java. We provide the first comparison of the approaches, both experimentally using realistic workloads, and analytically in terms of schedulability.

Funder

Division of Computing and Communication Foundations

Ministry of Education, Youth and Sports

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Transactional Sapphire;ACM Transactions on Programming Languages and Systems;2018-12-31

2. A survey of real‐time capabilities in functional languages and compilers;Concurrency and Computation: Practice and Experience;2018-10-23

3. Idle-time garbage-collection scheduling;Communications of the ACM;2016-09-22

4. Idle time garbage collection scheduling;ACM SIGPLAN Notices;2016-08

5. Idle time garbage collection scheduling;Proceedings of the 37th ACM SIGPLAN Conference on Programming Language Design and Implementation;2016-06-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3