Towards Efficient Build Ordering for Incremental Builds with Multiple Configurations

Author:

Lyu Jun1ORCID,Li Shanshan1ORCID,Zhang He1ORCID,Yang Lanxin1ORCID,Liu Bohan1ORCID,Rigger Manuel2ORCID

Affiliation:

1. Nanjing University, Nanjing, China

2. National University of Singapore, Singapore, Singapore

Abstract

Software products have many configurations to meet different environments and diverse needs. Building software with multiple software configurations typically incurs high costs in terms of build time and computing resources. Incremental builds could reuse intermediate artifacts if configuration settings affect only a portion of the build artifacts. The efficiency gains depend on the strategic ordering of the incremental builds as the order influences which build artifacts can be reused. Deriving an efficient order is challenging and an open problem, since it is infeasible to reliably determine the degree of re-use and time savings before an actual build. In this paper, we propose an approach, called BUDDI—BUild Declaration DIstance, for C-based and Make-based projects to derive an efficient order for incremental builds from the static information provided by the build scripts (i.e., Makefile). The core strategy of BUDDI is to measure the distance between the build declarations of configurations and predict the build size of a configuration from the build targets and build commands in each configuration. Since some artifacts could be reused in the subsequent builds if there is a close distance between the build scripts for different configurations. We implemented BUDDI as an automated tool called BuddiPlanner and evaluated it on 20 popular open-source projects, by comparing it to a baseline that randomly selects a build order. The experimental results show that the order created by BuddiPlanner outperforms 96.5% (193/200) of the random build orders in terms of build time and reduces the build time by an average of 305.94s (26%) compared to the random build orders, with a median saving of 64.88s (28%). BuddiPlanner demonstrates its potential to relieve practitioners of excessive build times and computational resource burdens caused by building multiple software configurations.

Publisher

Association for Computing Machinery (ACM)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3