Generalizing motion edits with Gaussian processes

Author:

Ikemoto Leslie1,Arikan Okan2,Forsyth David3

Affiliation:

1. University of California, Berkeley, CA

2. University of Texas, Austin, TX

3. University of Illinois, Urbana-Champaign, Urbana, IL

Abstract

One way that artists create compelling character animations is by manipulating details of a character's motion. This process is expensive and repetitive. We show that we can make such motion editing more efficient by generalizing the edits an animator makes on short sequences of motion to other sequences. Our method predicts frames for the motion using Gaussian process models of kinematics and dynamics. These estimates are combined with probabilistic inference. Our method can be used to propagate edits from examples to an entire sequence for an existing character, and it can also be used to map a motion from a control character to a very different target character. The technique shows good generalization. For example, we show that an estimator, learned from a few seconds of edited example animation using our methods, generalizes well enough to edit minutes of character animation in a high-quality fashion. Learning is interactive: An animator who wants to improve the output can provide small, correcting examples and the system will produce improved estimates of motion. We make this interactive learning process efficient and natural with a fast, full-body IK system with novel features. Finally, we present data from interviews with professional character animators that indicate that generalizing and propagating animator edits can save artists significant time and work.

Funder

Office of Naval Research

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design

Cited by 59 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. MotionDiffuse: Text-Driven Human Motion Generation With Diffusion Model;IEEE Transactions on Pattern Analysis and Machine Intelligence;2024-06

2. Contrastive disentanglement for self-supervised motion style transfer;Multimedia Tools and Applications;2024-01-30

3. What is the Best Automated Metric for Text to Motion Generation?;SIGGRAPH Asia 2023 Conference Papers;2023-12-10

4. MOCHA: Real-Time Motion Characterization via Context Matching;SIGGRAPH Asia 2023 Conference Papers;2023-12-10

5. FineStyle: Semantic-Aware Fine-Grained Motion Style Transfer with Dual Interactive-Flow Fusion;IEEE Transactions on Visualization and Computer Graphics;2023-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3