Affiliation:
1. TU Dortmund, Dortmund, Germany
Abstract
Automated recommendations have become a ubiquitous part of today’s online user experience. These systems point us to additional items to purchase in online shops, they make suggestions to us on movies to watch, or recommend us people to connect with on social websites. In many of today’s applications, however, the only way for users to interact with the system is to inspect the recommended items. Often, no mechanisms are implemented for users to give the system feedback on the recommendations or to explicitly specify preferences, which can limit the potential overall value of the system for its users.
Academic research in recommender systems is largely focused on algorithmic approaches for item selection and ranking. Nonetheless, over the years a variety of proposals were made on how to design more interactive recommenders. This work provides a comprehensive overview on the existing literature on user interaction aspects in recommender systems. We cover existing approaches for preference elicitation and result presentation, as well as proposals that consider recommendation as an interactive process. Throughout the work, we furthermore discuss examples of real-world systems and outline possible directions for future works.
Publisher
Association for Computing Machinery (ACM)
Subject
Artificial Intelligence,Human-Computer Interaction
Cited by
113 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献