Affiliation:
1. Ulm University and European Organization for Nuclear Research (CERN), Geneva, Switzerland
2. Inmdependent Researcher, Nuremberg, Germany
3. European Organization for Nuclear Research (CERN), Geneva, Switzerland
4. Ulm University, Ulm, Germany
Abstract
Internet of Things (IoT) devices are becoming more widespread not only in areas such as smart homes and smart cities but also in research and office environments. The sheer number, heterogeneity, and limited patch availability provide significant challenges for the security of both office networks and the Internet in general. The systematic estimation of device risks, which is essential for mitigation decisions, is currently a skill-intensive task that requires expertise in network vulnerability scanning, as well as manual effort in firmware binary analysis.
This article introduces SAFER,
1
the Security Assessment Framework for Embedded-device Risks, which enables a semi-automated risk assessment of IoT devices in any network. SAFER combines information from network device identification and automated firmware analysis to estimate the current risk associated with the device. Based on past vulnerability data and vendor patch intervals for device models, SAFER extrapolates those observations into the future using different automatically parameterized prediction models. Based on that, SAFER also estimates an indicator for future security risks. This enables users to be aware of devices exposing high risks in the future.
One major strength of SAFER over other approaches is its scalability, achieved through significant automation. To demonstrate this strength, we apply SAFER in the network of a large multinational organization, to systematically assess the security level of hundreds of IoT devices on large-scale networks.
Results indicate that SAFER successfully identified 531 out of 572 devices leading to a device identification rate of 92.83 %, analyzed 825 firmware images, and predicted the current and future security risk for 240 devices.
Publisher
Association for Computing Machinery (ACM)
Subject
Safety, Risk, Reliability and Quality,General Computer Science
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献