Efficient memory management for hardware accelerated Java Virtual Machines

Author:

Bertels Peter1,Heirman Wim1,D'Hollander Erik1,Stroobandt Dirk1

Affiliation:

1. Ghent University, Gent, Belgium

Abstract

Application-specific hardware accelerators can significantly improve a system's performance. In a Java-based system, we then have to consider a hybrid architecture that consists of a Java Virtual Machine running on a general-purpose processor connected to the hardware accelerator. In such a hybrid architecture, data communication between the accelerator and the general-purpose processor can incur a significant cost, which may even annihilate the original performance improvement of adding the accelerator. A careful layout of the data in the memory structure is therefore of major importance to maintain the acceleration performance benefits. This article addresses the reduction of the communication cost in a distributed shared memory consisting of the main memory of the processor and the accelerator's local memory, which are unified in the Java heap. Since memory access times are highly nonuniform, a suitable allocation of objects in either main memory or the accelerator's local memory can significantly reduce the communication cost. We propose several techniques for finding the optimal location for each Java object's data, either statically through profiling or dynamically at runtime. We show how we can reduce communication cost by up to 86% for the SPECjvm and DaCapo benchmarks. We also show that the best strategy is application dependent and also depends on the relative cost of remote versus local accesses. For a relative cost higher than 10, a self-learning dynamic approach often results in the best performance.

Funder

OptiMMA

FlexWare

Publisher

Association for Computing Machinery (ACM)

Subject

Electrical and Electronic Engineering,Computer Graphics and Computer-Aided Design,Computer Science Applications

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Unified Shared Memory: Friend or Foe? Understanding the Implications of Unified Memory on Managed Heaps;Proceedings of the 20th ACM SIGPLAN International Conference on Managed Programming Languages and Runtimes;2023-10-19

2. Using method interception for hardware/software co-development;Design Automation for Embedded Systems;2009-07-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3