Locally-iterative Distributed (Δ + 1)-coloring and Applications

Author:

Barenboim Leonid1,Elkin Michael2,Goldenberg Uri1

Affiliation:

1. Open University of Israel, Raanana

2. Ben-Gurion University of the Negev, Beer-Sheva

Abstract

We consider graph coloring and related problems in the distributed message-passing model. Locally-iterative algorithms are especially important in this setting. These are algorithms in which each vertex decides about its next color only as a function of the current colors in its 1-hop-neighborhood . In STOC’93 Szegedy and Vishwanathan showed that any locally-iterative Δ + 1-coloring algorithm requires Ω (Δ log Δ + log * n ) rounds, unless there exists “a very special type of coloring that can be very efficiently reduced” [ 44 ]. No such special coloring has been found since then. This led researchers to believe that Szegedy-Vishwanathan barrier is an inherent limitation for locally-iterative algorithms and to explore other approaches to the coloring problem [ 2 , 3 , 19 , 32 ]. The latter gave rise to faster algorithms, but their heavy machinery that is of non-locally-iterative nature made them far less suitable to various settings. In this article, we obtain the aforementioned special type of coloring. Specifically, we devise a locally-iterative Δ + 1-coloring algorithm with running time O (Δ + log * n ), i.e., below Szegedy-Vishwanathan barrier. This demonstrates that this barrier is not an inherent limitation for locally-iterative algorithms. As a result, we also achieve significant improvements for dynamic, self-stabilizing, and bandwidth-restricted settings. This includes the following results: We obtain self-stabilizing distributed algorithms for Δ + 1-vertex-coloring, (2Δ - 1)-edge-coloring, maximal independent set, and maximal matching with O (Δ + log * n ) time. This significantly improves previously known results that have O(n) or larger running times [ 23 ]. We devise a (2Δ - 1)-edge-coloring algorithm in the CONGEST model with O (Δ + log * n ) time and O (Δ)-edge-coloring in the Bit-Round model with O (Δ + log n ) time. The factors of log * n and log n are unavoidable in the CONGEST and Bit-Round models, respectively. Previously known algorithms had superlinear dependency on Δ for (2Δ - 1)-edge-coloring in these models. We obtain an arbdefective coloring algorithm with running time O (√ Δ + log * n ). Such a coloring is not necessarily proper, but has certain helpful properties. We employ it to compute a proper (1 + ε)Δ-coloring within O (√ Δ + log * n ) time and Δ + 1-coloring within O (√ Δ log Δ log * Δ + log * n ) time. This improves the recent state-of-the-art bounds of Barenboim from PODC’15 [ 2 ] and Fraigniaud et al. from FOCS’16 [ 19 ] by polylogarithmic factors. Our algorithms are applicable to the SET-LOCAL model [ 25 ] (also known as the weak LOCAL model). In this model a relatively strong lower bound of Ω (Δ 1/3 ) is known for Δ + 1-coloring. However, most of the coloring algorithms do not work in this model. (In Reference [ 25 ] only Linial’s O2 )-time algorithm and Kuhn-Wattenhofer O (Δ log Δ)-time algorithms are shown to work in it.) We obtain the first linear-in-Δ Δ + 1-coloring algorithms that work also in this model.

Funder

Israel Science Foundation

Publisher

Association for Computing Machinery (ACM)

Subject

Artificial Intelligence,Hardware and Architecture,Information Systems,Control and Systems Engineering,Software

Reference45 articles.

1. An energy-efficient, self-stabilizing and distributed algorithm for maximal independent set construction in wireless sensor networks

2. Deterministic (Δ + 1)-Coloring in Sublinear (in Δ) Time in Static, Dynamic, and Faulty Networks

3. L. Barenboim and M. Elkin. 2009. Distributed - coloring in linear (in ) time. In Proceedings of the 41st ACM Symposium on Theory of Computing. 111–120.

4. L. Barenboim and M. Elkin. 2010. Deterministic distributed vertex coloring in polylogarithmic time. In Proceedings of the 29th ACM Symposium on Principles of Distributed Computing. 410–419.

5. L. Barenboim and M. Elkin. 2011. Distributed deterministic edge coloring using bounded neighborhood independence. In Proceedings of the 30th ACM Symposium on Principles of Distributed Computing. 129–138.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Distributed Graph Coloring Made Easy;ACM Transactions on Parallel Computing;2023-12-14

2. Self-stabilizing $$(\varDelta +1)$$-Coloring in Sublinear (in $$\varDelta $$) Rounds via Locally-Iterative Algorithms;Lecture Notes in Computer Science;2023-12-09

3. Distributed Self-Stabilizing MIS with Few States and Weak Communication;Proceedings of the 2023 ACM Symposium on Principles of Distributed Computing;2023-06-16

4. Improved Dynamic Colouring of Sparse Graphs;Proceedings of the 55th Annual ACM Symposium on Theory of Computing;2023-06-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3