Index Reduction for Differential-algebraic Equations with Mixed Matrices

Author:

Iwata Satoru1,Oki Taihei1ORCID,Takamatsu Mizuyo2

Affiliation:

1. University of Tokyo, Bunkyo-ku, Tokyo, Japan

2. Chuo University, Bunkyo-ku, Tokyo, Japan

Abstract

Differential-algebraic equations (DAEs) are widely used for the modeling of dynamical systems. The difficulty in numerically solving a DAE is measured by its differentiation index. For highly accurate simulation of dynamical systems, it is important to convert high-index DAEs into low-index DAEs. Most of the existing simulation software packages for dynamical systems are equipped with an index-reduction algorithm given by Mattsson and Söderlind. Unfortunately, this algorithm fails if there are numerical cancellations. These numerical cancellations are often caused by accurate constants in structural equations. Distinguishing those accurate constants from generic parameters that represent physical quantities, Murota and Iri introduced the notion of a mixed matrix as a mathematical tool for faithful model description in a structural approach to systems analysis. For DAEs described with the use of mixed matrices, efficient algorithms to compute the index have been developed by exploiting matroid theory. This article presents an index-reduction algorithm for linear DAEs whose coefficient matrices are mixed matrices, i.e., linear DAEs containing physical quantities as parameters. Our algorithm detects numerical cancellations between accurate constants and transforms a DAE into an equivalent DAE to which Mattsson–Söderlind’s index-reduction algorithm is applicable. Our algorithm is based on the combinatorial relaxation approach, which is a framework to solve a linear algebraic problem by iteratively relaxing it into an efficiently solvable combinatorial optimization problem. The algorithm does not rely on symbolic manipulations but on fast combinatorial algorithms on graphs and matroids. Our algorithm is proved to work for any linear DAEs whose coefficient matrices are mixed matrices. Furthermore, we provide an improved algorithm under an assumption based on dimensional analysis of dynamical systems. Through numerical experiments, it is confirmed that our algorithms run sufficiently fast for large-scale DAEs and output DAEs such that physical meanings of coefficients are easy to interpret. Our algorithms can also be applied to nonlinear DAEs by regarding nonlinear terms as parameters.

Funder

Japan Society for the Promotion of Science

Japan Science and Technology Agency

Publisher

Association for Computing Machinery (ACM)

Subject

Artificial Intelligence,Hardware and Architecture,Information Systems,Control and Systems Engineering,Software

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Symbolic matrix factorization for differential-algebraic equations index reduction;Journal of Computational and Applied Mathematics;2024-10

2. Structural Preprocessing Method for Nonlinear Differential-Algebraic Equations Using Linear Symbolic Matrices;Proceedings of the 2024 International Symposium on Symbolic and Algebraic Computation;2024-07-16

3. Improved structural methods for nonlinear differential-algebraic equations via combinatorial relaxation;IMA Journal of Numerical Analysis;2021-12-22

4. Quasi-velocities definition in Lagrangian multibody dynamics;Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science;2021-05-26

5. A New Block Structural Index Reduction Approach for Large-Scale Differential Algebraic Equations;Mathematics;2020-11-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3