Hashing Modulo Context-Sensitive 𝛼-Equivalence

Author:

Blaauwbroek Lasse1ORCID,Olšák Miroslav1ORCID,Geuvers Herman2ORCID

Affiliation:

1. Institut des Hautes Études Scientifiques, Bures-sur-Yvette, France

2. Radboud University, Nijmegen, Netherlands

Abstract

The notion of α-equivalence between λ-terms is commonly used to identify terms that are considered equal. However, due to the primitive treatment of free variables, this notion falls short when comparing subterms occurring within a larger context. Depending on the usage of the Barendregt convention (choosing different variable names for all involved binders), it will equate either too few or too many subterms. We introduce a formal notion of context-sensitive α-equivalence, where two open terms can be compared within a context that resolves their free variables. We show that this equivalence coincides exactly with the notion of bisimulation equivalence. Furthermore, we present an efficient O ( n log n ) runtime hashing scheme that identifies λ-terms modulo context-sensitive α-equivalence, generalizing over traditional bisimulation partitioning algorithms and improving upon a previously established O ( n log 2 n ) bound for a hashing modulo ordinary α-equivalence by Maziarz et al. Hashing λ-terms is useful in many applications that require common subterm elimination and structure sharing. We hav employed the algorithm to obtain a large-scale, densely packed, interconnected graph of mathematical knowledge from the Coq proof assistant for machine learning purposes.

Publisher

Association for Computing Machinery (ACM)

Reference29 articles.

1. (Leftmost-Outermost) Beta Reduction is Invariant, Indeed

2. Christel Baier and Joost-Pieter Katoen. 2008. Principles of model checking. MIT Press. isbn:978-0-262-02649-9

3. Hendrik Pieter Barendregt. 1985. The lambda calculus - its syntax and semantics (Studies in logic and the foundations of mathematics Vol. 103). Elsevier North-Holland.

4. Maciej Bendkowski. 2020. How to generate random lambda terms? CoRR, abs/2005.08856 (2020), arXiv:2005.08856. arxiv:2005.08856

5. A Head-to-Head Comparison of de Bruijn Indices and Names

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3