Traffic Matrix Prediction with Attention-based Recurrent Neural Network

Author:

Zhang Maliang1,Sang Yingpeng1,Li Weizheng1,Cai Chaoxin1,Huang Jinghao1

Affiliation:

1. School of Computer Science and Engineering, Sun Yat-Sen University, China

Funder

the Science and Technology Program of Guangzhou, China

The Science and Technology Program of Guangdong Province, China

Publisher

ACM

Reference17 articles.

1. A. Azzouni and G. Pujolle. 2017. A Long Short-Term Memory Recurrent Neural Network Framework for Network Traffic Matrix Prediction. arXiv (2017). A. Azzouni and G. Pujolle. 2017. A Long Short-Term Memory Recurrent Neural Network Framework for Network Traffic Matrix Prediction. arXiv (2017).

2. D. Bahdanau K. Cho and Y. Bengio. 2014. Neural Machine Translation by Jointly Learning to Align and Translate. Computer Science (2014). D. Bahdanau K. Cho and Y. Bengio. 2014. Neural Machine Translation by Jointly Learning to Align and Translate. Computer Science (2014).

3. M. Barabas , G. Boanea , A.  B. Rus , V. Dobrota , and J. Domingo-Pascual . 2011. Evaluation of network traffic prediction based on neural networks with multi-task learning and multiresolution decomposition . In 2011 IEEE 7th International Conference on Intelligent Computer Communication and Processing. M. Barabas, G. Boanea, A. B. Rus, V. Dobrota, and J. Domingo-Pascual. 2011. Evaluation of network traffic prediction based on neural networks with multi-task learning and multiresolution decomposition. In 2011 IEEE 7th International Conference on Intelligent Computer Communication and Processing.

4. K. Cho B Van Merrienboer C. Gulcehre D. Ba Hdanau F. Bougares H. Schwenk and Y. Bengio. 2014. Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation. Computer Science (2014). K. Cho B Van Merrienboer C. Gulcehre D. Ba Hdanau F. Bougares H. Schwenk and Y. Bengio. 2014. Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation. Computer Science (2014).

5. J. Chung C. Gulcehre K. H. Cho and Y. Bengio. 2014. Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling. arXiv (2014). J. Chung C. Gulcehre K. H. Cho and Y. Bengio. 2014. Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling. arXiv (2014).

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Network traffic prediction by learning time series as images;Engineering Science and Technology, an International Journal;2024-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3