Classification of Corn Leaf Disease Using the Optimized DenseNet-169 Model

Author:

Tri Wahyuningrum Rima1,Kusumaningsih Ari1,Putra Rajeb Wijanarko2,Eddy Purnama I Ketut3

Affiliation:

1. Informatics Engineering, Indonesian, Indonesia

2. Department of Informatics Engineering, University of Trunojoyo Madura, Indonesia

3. Computer Engineering, Indonesian, Indonesia

Publisher

ACM

Reference17 articles.

1. TINJAUAN PERKEMBANGAN PERTANIAN JAGUNG DI MADURA DAN ALTERNATIF PENGOLAHAN MENJADI BIOMATERIAL

2. Plant leaf disease classification using EfficientNet deep learning model;Uçar M.;Ecol. Inform.,2020

3. LeafGAN: An Effective Data Augmentation Method for Practical Plant Disease Diagnosis;Cap Q. H.;IEEE Trans. Autom. Sci. Eng.,2020

4. Automated Identification of Northern Leaf Blight-Infected Maize Plants from Field Imagery Using Deep Learning

5. Comparison of Neural Network and Random Forest Classifier Performance on Dragon Fruit Disease

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Fine-Tuned DenseNet Model for an Efficient Maize Leaf Disease Classification;2024 IEEE International Conference on Interdisciplinary Approaches in Technology and Management for Social Innovation (IATMSI);2024-03-14

2. Combining Spatial and Temporal Analysis: A CNN-LSTM Hybrid Model for Maize Disease Classification;2024 IEEE International Conference on Computing, Power and Communication Technologies (IC2PCT);2024-02-09

3. Classification of Corn Leaf Diseases using Loss-Fused Convolutional Neural Network;2023 International Conference on Information Management and Technology (ICIMTech);2023-08-24

4. Multi-stage Transfer Learning for Corn Leaf Disease Classification;2023 IEEE International Conference on Automatic Control and Intelligent Systems (I2CACIS);2023-06-17

5. Classification of Corn Leaf Diseases using Various Pre-trained Deep Learning Networks and Performance Comparison;2022 International Conference on Advances in Computing, Communication and Materials (ICACCM);2022-11-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3