Deciding on an adjustment for multiplicity in IR experiments
Author:
Affiliation:
1. Carnegie Mellon University, Pittsburgh, PA, USA
2. Abt Associates Inc, Bethesda, MD, USA
3. Texas Tech University, Lubbock, TX, USA
Publisher
ACM
Link
https://dl.acm.org/doi/pdf/10.1145/2484028.2484034
Reference38 articles.
1. Anonymous. Guidance for Industry - E9 Statistical Principles for Clinical Trials. Technical report U.S. Department of Health and Human Services - Food and Drug Administration Center for Drug Evaluation and Research Center for Biologics Evaluation and Research ICH 1998. Anonymous. Guidance for Industry - E9 Statistical Principles for Clinical Trials. Technical report U.S. Department of Health and Human Services - Food and Drug Administration Center for Drug Evaluation and Research Center for Biologics Evaluation and Research ICH 1998.
2. Adjusting for multiple testing—when and how?
3. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing
4. R. Blanco and H. Zaragoza. Beware of relatively large but meaningless improvements. Technical report YL-2011-001 Yahoo! Research 2011. R. Blanco and H. Zaragoza. Beware of relatively large but meaningless improvements. Technical report YL-2011-001 Yahoo! Research 2011.
5. Bias and the limits of pooling for large collections
Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Uncontextualized significance considered dangerous;Proceedings of the 47th International ACM SIGIR Conference on Research and Development in Information Retrieval;2024-07-10
2. Multiple Testing for IR and Recommendation System Experiments;Lecture Notes in Computer Science;2024
3. One-Shot Labeling for Automatic Relevance Estimation;Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval;2023-07-18
4. On Survivorship Bias in MS MARCO;Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval;2022-07-06
5. A Systematic Evaluation of Transfer Learning and Pseudo-labeling with BERT-based Ranking Models;Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval;2021-07-11
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3