Robust Structure-Aware Graph-based Semi-Supervised Learning: Batch and Recursive Processing

Author:

Chen Xu1ORCID

Affiliation:

1. Zoom Video Communications Inc, San Jose, United States

Abstract

Graph-based semi-supervised learning plays an important role in large scale image classification tasks. However, the problem becomes very challenging in the presence of noisy labels and outliers. Moreover, traditional robust semi-supervised learning solutions suffers from prohibitive computational burdens thus cannot be computed for streaming data. Motivated by that, we present a novel unified framework robust structure-aware semi-supervised learning called Unified RSSL (URSSL) for batch processing and recursive processing robust to both outliers and noisy labels. Particularly, URSSL applies joint semi-supervised dimensionality reduction with robust estimators and network sparse regularization simultaneously on the graph Laplacian matrix iteratively to preserve the intrinsic graph structure and ensure robustness to the compound noise. First, in order to relieve the influence from outliers, a novel semi-supervised robust dimensionality reduction is applied relying on robust estimators to suppress outliers. Meanwhile, to tackle noisy labels, the denoised graph similarity information is encoded into the network regularization. Moreover, by identifying strong relevance of dimensionality reduction and network regularization in the context of robust semi-supervised learning (RSSL), a two-step alternative optimization is derived to compute optimal solutions with guaranteed convergence. We further derive our framework to adapt to large scale semi-supervised learning particularly suitable for large scale image classification and demonstrate the model robustness under different adversarial attacks. For recursive processing, we rely on reparameterization to transform the formulation to unlock the challenging problem of robust streaming-based semi-supervised learning. Last but not least, we extend our solution into distributed solutions to resolve the challenging issue of distributed robust semi-supervised learning when images are captured by multiple cameras at different locations. Extensive experimental results demonstrate the promising performance of this framework when applied to multiple benchmark datasets with respect to state-of-the-art approaches for important applications in the areas of image classification and spam data analysis.

Publisher

Association for Computing Machinery (ACM)

Reference58 articles.

1. Semi-supervised discriminative classification robust to sample-outliers and feature-noises;Adeli E.;IEEE Transactions on Pattern Analysis and Machine Intelligence,2018

2. Unsupervised label noise modeling and loss correction;Arazo E.;International Conference on Machine Learning,2019

3. A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems

4. Distributed semi-supervised learning with kernel ridge regression;Chang X.;Journal of Machine Learning Research,2017

5. Understanding and utilizing deep neural networks trained with noisy labels;Chen P.;International Conference on Machine Learning,2019

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3