Affiliation:
1. Fairfield University, Fairfield, Connecticut
2. University of North Carolina at Charlotte, Charlotte, North Carolina
Abstract
The unstructured nature of online reviews makes it inefficient and inconvenient for prospective consumers to research and use in support of purchase decision making. The aspects of products provide a fine-grained meaningful perspective for understanding and organizing review texts. Traditional aspect term extraction approaches rely on discrete language models that treat words in isolation. Despite that continuous-space language models have demonstrated promise in addressing a wide range of problems, their application in aspect term extraction faces significant challenges. For instance, existing continuous-space language models typically require large collections of labeled data, which remain difficult to obtain in many domains. More importantly, previous methods are largely data driven but overlook the role of human knowledge in guiding model development. To address these limitations, this study designs and develops weakly supervised WordNet-guided deep learning to aspect term extraction. The approach draws on deep-level semantic information from WordNet to guide not only the selection representative seed terms but also the pruning of aspect candidate terms. The weak supervision is provided by a very small set of labeled data. We conduct a comprehensive evaluation of the proposed method using both direct and indirect methods. The evaluation results with Yelp restaurant reviews demonstrate that our proposed method consistently outperforms all baseline methods including discrete models and the state-of-the-art continuous-space language models for aspect term extraction across both direct and indirect evaluations. The research findings have broad research, technical, and practical implications for various stakeholders of online reviews.
Funder
National Science Foundation
Publisher
Association for Computing Machinery (ACM)
Subject
General Computer Science,Management Information Systems
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献