Selectivity Estimation for Queries Containing Predicates over Set-Valued Attributes

Author:

Meng Zizhong1ORCID,Cao Xin2ORCID,Cong Gao1ORCID

Affiliation:

1. Nanyang Technological University, Singapore, Singapore

2. University of New South Wales, Sydney, NSW, Australia

Abstract

Selectivity estimation aims to estimate the size of query results size accurately and efficiently. Despite being a well-researched area for decades, most existing estimators are designed to handle comparison predicates over numeric and categorical data. Nevertheless, Set-valued data are ubiquitous in many applications such as information retrieval and recommendation systems. However, these estimators may not be effective for handling predicates over set-valued data. In this work, we presents novel techniques for selectivity estimation on queries involving predicates over set-valued attributes. We first propose the set-valued column factorization problem, whereby each each set-valued column is converted to multiple numeric subcolumns, and set containment predicates are converted to numeric comparison predicates. This enables us to leverage any existing estimator to perform selectivity estimation. We then develop two methods for column factorization and query conversion, namely ST and STH. We integrate ST and STH into three estimators, Postgres, Neurocard, and DeepDB. We then conduct a comprehensive empirical analysis by comparing our approach against three baselines across three different datasets. The experimental results demonstrate that our methods exhibit superior estimation accuracy while maintaining high efficiency compared to the baseline techniques.

Funder

Ministry of Education, Singapore

Publisher

Association for Computing Machinery (ACM)

Reference46 articles.

1. Self-tuning histograms

2. Array operators 2023. Array operators in Postgresql. https://www.postgresql.org/docs/12/functions-array.html Array operators 2023. Array operators in Postgresql. https://www.postgresql.org/docs/12/functions-array.html

3. Walter Cai Magdalena Balazinska and Dan Suciu. 2019. Pessimistic cardinality estimation: Tighter upper bounds for intermediate join cardinalities. In SIGMOD. 18--35. Walter Cai Magdalena Balazinska and Dan Suciu. 2019. Pessimistic cardinality estimation: Tighter upper bounds for intermediate join cardinalities. In SIGMOD. 18--35.

4. Containment function 2023. Containment function in PostGIS. https://postgis.net/docs/ST_Contains.html Containment function 2023. Containment function in PostGIS. https://postgis.net/docs/ST_Contains.html

5. Cover function 2023. Cover function in PostGIS. https://postgis.net/docs/ST_Covers.html Cover function 2023. Cover function in PostGIS. https://postgis.net/docs/ST_Covers.html

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3