End-to-end codesign of Hessian-aware quantized neural networks for FPGAs

Author:

Campos Javier1ORCID,Mitrevski Jovan1ORCID,Tran Nhan1ORCID,Dong Zhen2ORCID,Gholaminejad Amir2ORCID,Mahoney Michael W.2ORCID,Duarte Javier3ORCID

Affiliation:

1. Fermilab, Batavia, United States

2. University of California Berkeley, Berkeley, United States

3. University of California San Diego, La Jolla, United States

Abstract

We develop an end-to-end workflow for the training and implementation of co-designed neural networks (NNs) for efficient field-programmable gate array (FPGA) hardware. Our approach leverages Hessian-aware quantization of NNs, the Quantized Open Neural Network Exchange intermediate representation, and the hls4ml tool flow for transpiling NNs into FPGA firmware. This makes efficient NN implementations in hardware accessible to nonexperts in a single open sourced workflow that can be deployed for real-time machine-learning applications in a wide range of scientific and industrial settings. We demonstrate the workflow in a particle physics application involving trigger decisions that must operate at the 40-MHz collision rate of the CERN Large Hadron Collider (LHC). Given the high collision rate, all data processing must be implemented on FPGA hardware within the strict area and latency requirements. Based on these constraints, we implement an optimized mixed-precision NN classifier for high-momentum particle jets in simulated LHC proton-proton collisions.

Funder

U.S. Department of Energy (DOE), Office of Science, Office of Advanced Scientific Computing Research under the “Real-time Data Reduction Codesign at the Extreme Edge for Science”

Fermi Research Alliance, LLC

Office of Science, Office of High Energy Physics Early Career Research

U.S. National Science Foundation (NSF) Harnessing the Data Revolution (HDR) Institute for Accelerating AI Algorithms for Data Driven Discovery (A3D3) under Cooperative Agreement

DOE Early Career Research program

Publisher

Association for Computing Machinery (ACM)

Reference65 articles.

1. Fast convolutional neural networks on FPGAs with hls4ml

2. Operation of the ATLAS trigger system in Run 2;Collaboration ATLAS;J. Instrum.,2020

3. Junjie Bai Fang Lu Ke Zhang et al. 2019. ONNX: Open Neural Network Exchange. Retrieved from https://github.com/onnx/onnx

4. Colby Banbury, Vijay Janapa Reddi, Peter Torelli, Jeremy Holleman, Nat Jeffries, Csaba Kiraly, Pietro Montino, David Kanter, Sebastian Ahmed, Danilo Pau, Urmish Thakker, Antonio Torrini, Peter Warden, Jay Cordaro, Giuseppe Di Guglielmo, Javier Duarte, Stephen Gibellini, Videet Parekh, Honson Tran, Nhan Tran, Niu Wenxu, and Xu Xuesong. 2021. MLPerf tiny benchmark. In Proceedings of the Neural Information Processing Systems Track on Datasets and Benchmarks, J. Vanschoren and S. Yeung (Eds.), Vol. 1. Curran.

5. UNIQ: Uniform noise injection for non-uniform quantization of neural networks;Baskin Chaim;ACM Trans. Comput. Syst.,2021

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3