Combining Polygon Schematization and Decomposition Approaches for Solving the Cavity Decomposition Problem

Author:

Cicerone Serafino1,D’emidio Mattia1,Frigioni Daniele1,Pascucci Filippo Tirabassi1

Affiliation:

1. University of L’Aquila, L’Aquila, Italy

Abstract

The cavity decomposition problem is a computational geometry problem, arising in the context of modern electronic CAD systems, that concerns detecting the generation and propagation of electromagnetic noise into multi-layer printed circuit boards. Algorithmically speaking, the problem can be formulated so as to contain, as sub-problems, the well-known polygon schematization and polygon decomposition problems. Given a polygon P and a finite set C of given directions, polygon schematization asks for computing a C -oriented polygon P ′ with “low complexity” and “high resemblance” to P , whereas polygon decomposition asks for partitioning P into a set of basic polygonal elements (e.g., triangles) whose size is as small as possible. In this article, we present three different solutions for the cavity decomposition problem, which are obtained by suitably combining existing algorithms for polygon schematization and decomposition, by considering different input parameters, and by addressing both methodological and implementation issues. Since it is difficult to compare the three solutions on a theoretical basis, we present an extensive experimental study, employing both real-world and random data, conducted to assess their performance. We rank the proposed solutions according to the results of the experimental evaluation, and provide insights on natural candidates to be adopted, in practice, as modules of modern printed circuit board design software tools, depending on the observed performance and on the different constraints on the desired output.

Publisher

Association for Computing Machinery (ACM)

Subject

Discrete Mathematics and Combinatorics,Geometry and Topology,Computer Science Applications,Modeling and Simulation,Information Systems,Signal Processing

Reference41 articles.

1. Area-preserving simplification and schematization of polygonal subdivisions;Buchin Kevin;ACM Transactions on Spatial Algorithms and Systems,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3