Fall Detection via Inaudible Acoustic Sensing

Author:

Lian Jie1,Yuan Xu1,Li Ming2,Tzeng Nian-Feng1

Affiliation:

1. University of Louisiana at Lafayette, Louisiana, Lafayette, USA

2. The University of Texas at Arlington, Arlington, Texas, USA

Abstract

The fall detection system is of critical importance in protecting elders through promptly discovering fall accidents to provide immediate medical assistance, potentially saving elders' lives. This paper aims to develop a novel and lightweight fall detection system by relying solely on a home audio device via inaudible acoustic sensing, to recognize fall occurrences for wide home deployment. In particular, we program the audio device to let its speaker emit 20kHz continuous wave, while utilizing a microphone to record reflected signals for capturing the Doppler shift caused by the fall. Considering interferences from different factors, we first develop a set of solutions for their removal to get clean spectrograms and then apply the power burst curve to locate the time points at which human motions happen. A set of effective features is then extracted from the spectrograms for representing the fall patterns, distinguishable from normal activities. We further apply the Singular Value Decomposition (SVD) and K-mean algorithms to reduce the data feature dimensions and to cluster the data, respectively, before input them to a Hidden Markov Model for training and classification. In the end, our system is implemented and deployed in various environments for evaluation. The experimental results demonstrate that our system can achieve superior performance for detecting fall accidents and is robust to environment changes, i.e., transferable to other environments after training in one environment.

Funder

National Science Foundation

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications,Hardware and Architecture,Human-Computer Interaction

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Radar-Based Fall Detection: A Survey [Survey];IEEE Robotics & Automation Magazine;2024-09

2. Adaptive Metasurface-Based Acoustic Imaging using Joint Optimization;Proceedings of the 22nd Annual International Conference on Mobile Systems, Applications and Services;2024-06-03

3. TouchTone: Smartwatch Privacy Protection via Unobtrusive Finger Touch Gestures;Proceedings of the 22nd Annual International Conference on Mobile Systems, Applications and Services;2024-06-03

4. Acoustic Sensing for Fitness Activities Recognition: A Deep Learning Approach;IEEE INFOCOM 2024 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS);2024-05-20

5. Pushing the Limits of Acoustic Spatial Perception via Incident Angle Encoding;Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies;2024-05-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3