Dynamically allocating processor resources between nearby and distant ILP

Author:

Balasubramonian Rajeev1,Dwarkadas Sandhya1,Albonesi David H.2

Affiliation:

1. Department of Computer Science, University of Rochester

2. Department of Electrical and Computer Engineering, University of Rochester

Abstract

Modern superscalar processors use wide instruction issue widths and out-of-order execution in order to increase instruction-level parallelism (ILP). Because instructions must be committed in order so as to guarantee precise exceptions, increasing ILP implies increasing the sizes of structures such as the register file, issue queue, and reorder buffer. Simultaneously, cycle time constraints limit the sizes of these structures, resulting in conflicting design requirements. In this paper, we present a novel microarchitecture designed to overcome the limitations of a register file size dictated by cycle time constraints. Available registers are dynamically allocated between the primary program thread and a future thread. The future thread executes instructions when the primary thread is limited by resource availability. The future thread is nor constrained by in order commit requirements. It is therefore able to examine a much larger instruction window and jump far ahead to execute ready instructions. Results are communicated back to the primary thread by warming up the register file, instruction cache, data cache, and instruction reuse buffer, and by resolving branch mispredicts early. The proposed microarchitecture is able to get on overall speedup of 1.17 over the base processor for our benchmark set, with speedups of up to 1.64 .

Publisher

Association for Computing Machinery (ACM)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Criticality Driven Fetch;MICRO-54: 54th Annual IEEE/ACM International Symposium on Microarchitecture;2021-10-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3