Automating NISQ Application Design with Meta Quantum Circuits with Constraints (MQCC)

Author:

Deng Haowei1ORCID,Peng Yuxiang1ORCID,Hicks Michael2ORCID,Wu Xiaodi1ORCID

Affiliation:

1. University of Maryland, College Park, MD, USA

2. Amazon and University of Maryland, College Park, MD, USA

Abstract

Near-term intermediate scale quantum (NISQ) computers are likely to have very restricted hardware resources, where precisely controllable qubits are expensive, error-prone, and scarce. Programmers of such computers must therefore balance trade-offs among a large number of (potentially heterogeneous) factors specific to the targeted application and quantum hardware. To assist them, we propose Meta Quantum Circuits with Constraints (MQCC) , a meta-programming framework for quantum programs. Programmers express their application as a succinct collection of normal quantum circuits stitched together by a set of (manually or automatically) added meta-level choice variables, whose values are constrained according to a programmable set of quantitative optimization criteria. MQCC’s compiler generates the appropriate constraints and solves them via an SMT solver, producing an optimized, runnable program. We showcase a few MQCC’s applications for its generality including an automatic generation of efficient error syndrome extraction schemes for fault-tolerant quantum error correction with heterogeneous qubits and an approach to writing approximate quantum Fourier transformation and quantum phase estimation that smoothly trades off accuracy and resource use. We also illustrate that MQCC can easily encode prior one-off NISQ application designs- –multi-programming (MP) , crosstalk mitigation (CM) —as well as a combination of their optimization goals (i.e., a combined MP-CM).

Funder

U.S. Department of Energy

Office of Science, Office of Advanced Scientific Computing Research, Quantum Testbed Pathfinder Program

Accelerated Research in Quantum Computing

Publisher

Association for Computing Machinery (ACM)

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3