A Segment Augmentation and Prediction Consistency Framework for Multi-label Unknown Intent Detection

Author:

Yang Jiacheng1ORCID,Chen Miaoxin2ORCID,Liu Cao3ORCID,Dai Boqi2ORCID,Zheng Hai-Tao1ORCID,Wang Hui4ORCID,Xie Rui3ORCID,Kim Hong-Gee5ORCID

Affiliation:

1. Shenzhen International Graduate school, Tsinghua University, Shenzhen 518055, China and Peng Cheng Laboratory, Shenzhen 518038, China

2. Shenzhen International Graduate school, Tsinghua University, Shenzhen 518055, China

3. Meituan, China

4. Peng Cheng Laboratory, Shenzhen 518038, China

5. Seoul National University, Seoul, South Korea

Abstract

Multi-label unknown intent detection is a challenging task where each utterance may contain not only multiple known but also unknown intents. To tackle this challenge, pioneers proposed to predict the intent number of the utterance first, then compare it with the results of known intent matching to decide whether the utterence contains unknown intent(s). Though they have made remarkable progress on this task, their methods still suffer from two important issues: 1) It is inadequate to extract multiple intents using only utterance encoding; 2) Optimizing two sub-tasks (intent number prediction and known intent matching) independently leads to inconsistent predictions. In this paper, we propose to incorporate segment augmentation rather than only use utterance encoding to better detect multiple intents. We also design a prediction consistency module to bridge the gap between the two sub-tasks. Empirical results on MultiWOZ2.3 and MixSNIPS datasets show that our method achieves state-of-the-art performance and improves the best baseline significantly.

Publisher

Association for Computing Machinery (ACM)

Reference70 articles.

1. Iñigo Casanueva, Tadas Temčinas, Daniela Gerz, Matthew Henderson, and Ivan Vulić. 2020. Efficient Intent Detection with Dual Sentence Encoders. In Proceedings of the 2nd Workshop on Natural Language Processing for Conversational AI. 38–45.

2. Relational Proxies: Emergent Relationships as Fine-Grained Discriminators;Chaudhuri Abhra;Advances in Neural Information Processing Systems,2022

3. Miaoxin Chen, Cao Liu, Boqi Dai, Zheng Haitao, Ting Song, Jiansong Chen, Wan Guanglu, and Xie Rui. 2023. Segment Augmentation and Prediction Consistency Neural Network for Multi-label Unknown Intent Detection. In ACM International Conference on Information and Knowledge Management.

4. Accelerating multiple intent detection and slot filling via targeted knowledge distillation;Cheng Xuxin;Findings of the Association for Computational Linguistics: EMNLP,2023

5. Learning to Classify Open Intent via Soft Labeling and Manifold Mixup

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3