Online Convex Optimization Using Predictions

Author:

Chen Niangjun1,Agarwal Anish1,Wierman Adam1,Barman Siddharth1,Andrew Lachlan L.H.2

Affiliation:

1. California Institute of Technology, Pasadena, CA, USA

2. Monash University, Victoria, Australia

Abstract

Making use of predictions is a crucial, but under-explored, area of online algorithms. This paper studies a class of online optimization problems where we have external noisy predictions available. We propose a stochastic prediction error model that generalizes prior models in the learning and stochastic control communities, incorporates correlation among prediction errors, and captures the fact that predictions improve as time passes. We prove that achieving sublinear regret and constant competitive ratio for online algorithms requires the use of an unbounded prediction window in adversarial settings, but that under more realistic stochastic prediction error models it is possible to use Averaging Fixed Horizon Control (AFHC) to simultaneously achieve sublinear regret and constant competitive ratio in expectation using only a constant-sized prediction window. Furthermore, we show that the performance of AFHC is tightly concentrated around its mean.

Funder

National Science Foundation

Australian Research Council

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications,Hardware and Architecture,Software

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Combining Regularization With Look-Ahead for Competitive Online Convex Optimization;IEEE/ACM Transactions on Networking;2024-06

2. Algorithms for Right-sizing Heterogeneous Data Centers;ACM Transactions on Parallel Computing;2023-12-14

3. Predictive control of linear discrete-time Markovian jump systems by learning recurrent patterns;Automatica;2023-10

4. Competitive prediction-aware online algorithms for energy generation scheduling in microgrids;Proceedings of the Thirteenth ACM International Conference on Future Energy Systems;2022-06-28

5. Online Optimization with Feedback Delay and Nonlinear Switching Cost;Proceedings of the ACM on Measurement and Analysis of Computing Systems;2022-02-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3