PHIST

Author:

Thies Jonas1,Röhrig-Zöllner Melven1,Overmars Nigel1,Basermann Achim1,Ernst Dominik2,Hager Georg2,Wellein Gerhard2

Affiliation:

1. German Aerospace Center (DLR), Germany

2. University of Erlangen-Nuremberg, Germany

Abstract

The increasing complexity of hardware and software environments in high-performance computing poses big challenges on the development of sustainable and hardware-efficient numerical software. This article addresses these challenges in the context of sparse solvers. Existing solutions typically target sustainability, flexibility, or performance, but rarely all of them. Our new library PHIST provides implementations of solvers for sparse linear systems and eigenvalue problems. It is a productivity platform for performance-aware developers of algorithms and application software with abstractions that do not obscure the view on hardware-software interaction. The PHIST software architecture and the PHIST development process were designed to overcome shortcomings of existing packages. An interface layer for basic sparse linear algebra functionality that can be provided by multiple backends ensures sustainability, and PHIST supports common techniques for improving scalability and performance of algorithms such as blocking and kernel fusion. We showcase these concepts using the PHIST implementation of a block Jacobi-Davidson solver for non-Hermitian and generalized eigenproblems. We study its performance on a multi-core CPU, a GPU, and a large-scale many-core system. Furthermore, we show how an existing implementation of a block Krylov-Schur method in the Trilinos package Anasazi can benefit from the performance engineering techniques used in PHIST.

Funder

ESSEX

German Research Council (DFG) under priority program

“Large-scale HPC Challenge” project

JCAHPC

SPPEXA, “Software for Exa-Scale”

Publisher

Association for Computing Machinery (ACM)

Subject

Applied Mathematics,Software

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3