A New Upper Bound on Cache Hit Probability for Non-Anticipative Caching Policies

Author:

Panigrahy Nitish K.1ORCID,Nain Philippe2ORCID,Neglia Giovanni2ORCID,Towsley Don1ORCID

Affiliation:

1. University of Massachusetts Amherst, Amherst, MA, USA

2. Centre Inria at Université Côte d’Azur, Sophia Antipolis Cedex, France

Abstract

Caching systems have long been crucial for improving the performance of a wide variety of network and web-based online applications. In such systems, end-to-end application performance heavily depends on the fraction of objects transferred from the cache, also known as the cache hit probability . Many caching policies have been proposed and implemented to improve the hit probability. In this work, we propose a new method to compute an upper bound on hit probability for all non-anticipative caching policies and for policies that have no knowledge of future requests. Our key insight is to order the objects according to the ratio of their Hazard Rate (HR) function values to their sizes, and place in the cache the objects with the largest ratios till the cache capacity is exhausted. When object request processes are conditionally independent, we prove that this cache allocation based on the HR-to-size ratio rule guarantees the maximum achievable expected number of object hits across all non-anticipative caching policies. Further, the HR ordering rule serves as an upper bound on cache hit probability when object request processes follow either independent delayed renewal process or a Markov modulated Poisson process. We also derive closed form expressions for the upper bound under some specific object request arrival processes. We provide simulation results to validate its correctness and to compare it to the state-of-the-art upper bounds, such as produced by Bélády’s algorithm. We find it to be tighter than state-of-the-art upper bounds for some specific object request arrival processes such as independent renewal, Markov modulated, and shot noise processes.

Funder

U.S. Army Research Laboratory and the U.K. Defence Science and Technology Laboratory

NSF

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications,Hardware and Architecture,Safety, Risk, Reliability and Quality,Media Technology,Information Systems,Software,Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3