Paragon

Author:

Delimitrou Christina1,Kozyrakis Christos1

Affiliation:

1. Stanford University, Stanford, CA, USA

Abstract

Large-scale datacenters (DCs) host tens of thousands of diverse applications each day. However, interference between colocated workloads and the difficulty to match applications to one of the many hardware platforms available can degrade performance, violating the quality of service (QoS) guarantees that many cloud workloads require. While previous work has identified the impact of heterogeneity and interference, existing solutions are computationally intensive, cannot be applied online and do not scale beyond few applications. We present Paragon, an online and scalable DC scheduler that is heterogeneity and interference-aware. Paragon is derived from robust analytical methods and instead of profiling each application in detail, it leverages information the system already has about applications it has previously seen. It uses collaborative filtering techniques to quickly and accurately classify an unknown, incoming workload with respect to heterogeneity and interference in multiple shared resources, by identifying similarities to previously scheduled applications. The classification allows Paragon to greedily schedule applications in a manner that minimizes interference and maximizes server utilization. Paragon scales to tens of thousands of servers with marginal scheduling overheads in terms of time or state. We evaluate Paragon with a wide range of workload scenarios, on both small and large-scale systems, including 1,000 servers on EC2. For a 2,500-workload scenario, Paragon enforces performance guarantees for 91% of applications, while significantly improving utilization. In comparison, heterogeneity-oblivious, interference-oblivious and least-loaded schedulers only provide similar guarantees for 14%, 11% and 3% of workloads. The differences are more striking in oversubscribed scenarios where resource efficiency is more critical.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design,Software

Cited by 412 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3