Affiliation:
1. Rutgers University, Piscataway, NJ, USA
Abstract
Several companies have recently announced plans to build "green" datacenters, i.e. datacenters partially or completely powered by renewable energy. These datacenters will either generate their own renewable energy or draw it directly from an existing nearby plant. Besides reducing carbon footprints, renewable energy can potentially reduce energy costs, reduce peak power costs, or both. However, certain renewable fuels are intermittent, which requires approaches for tackling the energy supply variability. One approach is to use batteries and/or the electrical grid as a backup for the renewable energy. It may also be possible to adapt the workload to match the renewable energy supply. For highest benefits, green datacenter operators must intelligently manage their workloads and the sources of energy at their disposal.
In this paper, we first discuss the tradeoffs involved in building green datacenters today and in the future. Second, we present Parasol, a prototype green datacenter that we have built as a research platform. Parasol comprises a small container, a set of solar panels, a battery bank, and a grid-tie. Third, we describe GreenSwitch, our model-based approach for dynamically scheduling the workload and selecting the source of energy to use. Our real experiments with Parasol, GreenSwitch, and MapReduce workloads demonstrate that intelligent workload and energy source management can produce significant cost reductions. Our results also isolate the cost implications of peak power management, storing energy on the grid, and the ability to delay the MapReduce jobs. Finally, our results demonstrate that careful workload and energy source management can minimize the negative impact of electrical grid outages.
Publisher
Association for Computing Machinery (ACM)
Subject
Computer Graphics and Computer-Aided Design,Software
Cited by
87 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献