Affiliation:
1. Shanghai Jiao Tong University, Shanghai, China
Abstract
Among various recommendation methods, latent factor models are usually considered to be state-of-the-art techniques, which aim to learn user and item embeddings for predicting user-item preferences. When applying latent factor models to the recommendation with implicit feedback, the quality of embeddings always suffers from inadequate positive feedback and noisy negative feedback. Inspired by the idea of NSVD that represents users based on their interacted items, this article proposes a dual-embedding based deep latent factor method for recommendation with implicit feedback. In addition to learning a primitive embedding for a user (resp. item), we represent each user (resp. item) with an additional embedding from the perspective of the interacted items (resp. users) and propose attentive neural methods to discriminate the importance of interacted users/items for dual-embedding learning. We design two dual-embedding based deep latent factor models, DELF and DESEQ, for pure collaborative filtering and temporal collaborative filtering (i.e., sequential recommendation), respectively. The novel attempt of the proposed models is to capture each user-item interaction with four deep representations that are subtly fused for preference prediction. We conducted extensive experiments on four real-world datasets. The results verify the effectiveness of user/item dual embeddings and the superior performance of our methods on item recommendation.
Funder
National Key Research and Development Program of China
Publisher
Association for Computing Machinery (ACM)
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献