Dual-Embedding based Deep Latent Factor Models for Recommendation

Author:

Cheng Weiyu1,Shen Yanyan1,Huang Linpeng1,Zhu Yanmin1

Affiliation:

1. Shanghai Jiao Tong University, Shanghai, China

Abstract

Among various recommendation methods, latent factor models are usually considered to be state-of-the-art techniques, which aim to learn user and item embeddings for predicting user-item preferences. When applying latent factor models to the recommendation with implicit feedback, the quality of embeddings always suffers from inadequate positive feedback and noisy negative feedback. Inspired by the idea of NSVD that represents users based on their interacted items, this article proposes a dual-embedding based deep latent factor method for recommendation with implicit feedback. In addition to learning a primitive embedding for a user (resp. item), we represent each user (resp. item) with an additional embedding from the perspective of the interacted items (resp. users) and propose attentive neural methods to discriminate the importance of interacted users/items for dual-embedding learning. We design two dual-embedding based deep latent factor models, DELF and DESEQ, for pure collaborative filtering and temporal collaborative filtering (i.e., sequential recommendation), respectively. The novel attempt of the proposed models is to capture each user-item interaction with four deep representations that are subtly fused for preference prediction. We conducted extensive experiments on four real-world datasets. The results verify the effectiveness of user/item dual embeddings and the superior performance of our methods on item recommendation.

Funder

National Key Research and Development Program of China

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Consistency and Discrepancy-Based Contrastive Tripartite Graph Learning for Recommendations;Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining;2024-08-24

2. Aspect-level item recommendation based on user reviews with variational autoencoders;Information Sciences;2024-06

3. Active intrusion detection and prediction based on temporal big data analytics;International Journal of Knowledge-based and Intelligent Engineering Systems;2024-05-28

4. An online-to-offline service recommendation method based on two-layer knowledge networks;Information Sciences;2023-11

5. Candidate Set Sampling for Evaluating Top-N Recommendation;2023 IEEE International Conference on Web Intelligence and Intelligent Agent Technology (WI-IAT);2023-10-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3